Явная разностная схема для уравнения те

Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы.

    Владислав Грузинский 5 лет назад Просмотров:

1 Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы. 1 Разностная аппроксимация уравнения теплопроводности Рассмотрим различные варианты разностной аппроксимации линейного одномерного по пространству уравнения теплопроводности: где T > 0 некоторая константа. u t = u + fx, t, x 0, l, t 0, T ], 1.1 x Введем в области D = <0 x l, 0 t T >равномерную сетку с шагом по координате и шагом по времени: x =, = 0, 1. = l; t j = j, j = 0, 1. M, M = T. Уравнение 1.1 содержит как производные по пространственной переменной x, так и по времени t, поэтому для построения его разностной аппроксимации придется использовать узлы сетки, соответствующие различным j. Все узлы сетки, отвечающие фиксированному j, называют j-м временным слоем. Свойства разностных схем для уравнения 1.1 зависят от того, на каком слое j по времени аппроксимируется выражение u x. Рассмотрим возможные варианты. Вариант 1: явная схема. Для аппроксимации оператора L = t x приведенный на рис. 1. в уравнении 1.1 используем шаблон, 1

2 Рис. 1: Шаблон явной схемы для уравнения теплопроводности. Соответствующий разностный оператор L 0 u имеет вид: L 0 ux, t + ux, t ux +, t ux, t + ux, t u =. Далее для краткости будем использовать следующие стандартные обозначения: u = ux, t; û = ux, t +. Тогда: u t = û u, L 0 u = u t u xx. Найдем погрешность аппроксимации разностным оператором L 0 исходного дифференциального оператора L в точке x, t. В случае достаточно гладкой функции ux, t при достаточно малых шагах и имеем: u t = ux, t + ux, t = ux, t t + O, 1. Следовательно, разностный оператор L 0 аппроксимирует дифференциальный оператор L с погрешностью O + в точке x, t: L 0 u xx = ux, t x + O. 1.3 ux, t u = t ux, t x > << >L[ux,t] +O +. Введем сеточную функцию ϕ = ϕx, t j, аппроксимирующую правую часть fx, t уравнения 1.1 на всех внутренних узлах x, t j сетки с погрешностью O +. В качестве ϕ можно взять, например ϕx, t j = fx, t j. Тогда разностное уравнение L 0 y = ϕ будет аппроксимировать исходное дифференциальное уравнение теплопроводности 1.1 с первым порядком погрешности по и вторым по.

3 Вариант. Чисто неявная схема. Используем для аппроксимации оператора L = t x приведенный на рис.. в уравнении 1.1 шаблон, Рис. : Шаблон неявной схемы для уравнения теплопроводности. Тогда разностная аппроксимация оператора L уравнения теплопроводности будет выглядеть следующим образом: L 1 ux, t + ux, t ux +, t + ux, t + + ux, t + u = = u t û xx. Рассмотрим погрешность аппроксимации разностным оператором L 1 исходного дифференциального оператора L в точках x, t, x, t +. Так как для достаточно гладкой функции ux, t справедливы равенства û xx = ux, t + x + O = ux, t x + O +, 1.4 то с учетом 1. получаем, что оператор L 1 аппроксимирует дифференциальный оператор L в уравнении 1.1 с погрешностью O + в точках x, t и x, t + : L 1 ux, t u = t ux, t x > << >L[ux,t] +O + ux, t + = ux, t + +O +. > t << x >L[ux,t+] Беря в качестве сеточной аппроксимации правой части уравнения 1.1, например, функцию ϕx, t j = fx, t j+1, получим разностное уравнение L 1 y = ϕ, аппроксимирующее 1.1 с погрешностью O +. 3

4 Вариант 3. Неявная схема с весами. Используем шаблон, приведенный на рис. 3, и линейную комбинацию операторов L 0 и L 1 для аппроксимации дифференциального оператора L: L σ u = σl1 u+1 σl0 u = σu t σû xx +1 σu t 1 σu xx = u t σû xx + 1 σu xx, где σ 0, 1. Рис. 3: Шаблон неявной схемы с весами для уравнения теплопроводности. Пользуясь равенствами 1., 1.3 и 1.4, получаем, что оператор L σ аппроксимирует исходный дифференциальный оператор L с погрешностью O + в точках x, t, x, t+ при любом σ. По определению погрешность ψx, t = L σ u Lu 1.5 аппроксимации выражения Lu разностным выражением L σ u может вычисляться в любой точке x, t, а не обязательно в каком-либо узле сетки, так как в соотношении 1.5 функция ux, t это произвольная достаточно гладкая функция непрерывных аргументов x и t. Поэтому рассмотрим погрешность аппроксимации оператором L σ дифференциального оператора L в центральной точке x, t шаблона, приведенного на рис. 3. Пользуясь для достаточно гладкой функции ux, t разложением в ряд Тейлора в окрестности точки x, t + 0.5, при малых и получаем: ux, t + ux, t u t = = u t + O, x,t+0.5 û xx = u x + O = u x,t+ x + 3 u x,t+0.5 t x + O +, x,t+0.5 u xx = u x + O = u x,t x x,t u t x + O +. x,t+0.5 4

5 Следовательно, при σ = 0.5 в точке x, t оператор L 0.5 в силу своей симметрии аппроксимирует L со вторым порядком погрешности аппроксимации по и : L σ u = ux, t + t ux, t + x > << >L[ux,t+ ] 3 ux, t + σ 1 + O +. > <<>x t 0 при σ=0.5 Для того, чтобы получить разностное уравнение, аппроксимирующее дифференциальное уравнение u t = u + fx, t x с погрешностью O + в точке x, t +, достаточно взять в качестве сеточной аппроксимации правой части fx, t этого уравнения функцию ϕx, t j = fx, t j Итак, разностное уравнение L 0.5 y = ϕ, где ϕx, t j = fx, t j + 0.5, аппроксимирует уравнение 1.1 со вторым порядком погрешности по и. Реализация явной, неявной и симметричной разностных схем для начально-краевой задачи для уравнения теплопроводности на отрезке. Пример.1. Постройте явную разностную схему для следующей начально-краевой задачи на отрезке x [0, 1]: u t = u + x, 0 6 задаче с однородными граничными условиями: v t = v, 0 7 Итак, первый вариант явной разностной схемы для задачи.1, обладающей погрешностью аппроксимации O +, имеет вид: y j = yj 1 yj + yj +1 + x, = 1. 1, j = 0, 1. M 1, y 0 3πx = sn, = 0, 1. 4 y j 0 = 0, y j yj 1 = t j, j = 0, 1. M. Рассмотрим алгоритм решения системы.4. При j = 0 значения y j известны из начального условия. Следовательно, при каждом фиксированном j = 0, 1. M 1 неизвестными являются. Найти их можно следующим образом: 1 при = 1. 1 из первого уравнения системы.4 находим = y j + y j +1 yj + yj 1 + x ; при = 0 и = пользуемся граничными условиями, учитывая, что 1 и 1 уже известны: 0 = 0, = yj t j+1; 3 переходим на новый слой по времени, увеличивая j на единицу и повторяем действия 1 и. На рис.4-6 приведены результаты решения системы.4 для = 50 и M = Рис. 4: Аналитическое решение задачи.1. Если мы хотим, чтобы явная схема аппроксимировала исходную задачу с погрешностью O +, то можно использовать тот же прием, который применялся ранее для ап- 7

8 Рис. 5: Численное решение задачи.1 с помощью явной схемы. Рис. 6: Погрешность численного решения задачи.1 с помощью явной схемы. проксимации граничного условия, содержащего производную, в краевой задаче для обыкновенного дифференциального уравнения на отрезке. Пусть ux, t решение задачи.1. Рассмотрим выражение: u x = ux, t ux, t ux, t = ux, t + O = x x ux, t = ux, t x + O. x t Заменяя в нем производную u t конечной разностью: ux, t t = ux, t ux, t + O, 8

9 получим ux, t ux, t = ux, t x ux, t ux, t x + O +. Переходя в полученном равенстве к пределу при x 1 и учитывая, что по условию u x = t, x=1 находим, что при t = t j+1 имеет место равенство: u j+1 uj+1 1 = t j+1 u j+1 uj 1 + O +. Следовательно, разностное уравнение yj+1 1 = t j+1 yj 1.5 аппроксимирует граничное условие Неймана при x = 1 с погрешностью O +. Таким образом, меняя в схеме.4 уравнение.3 на.5, мы получим схему, аппроксимирующую исходную задачу на ее решении с погрешностью O +. Уравнение.5 удобно переписать в виде: 1 = t j yj, j = 0, 1. M 1, и использовать при уже найденных 1, yj для завершения перехода на слой j + 1. Результаты расчетов по соответствующей явной схеме на той же сетке, что и в предыдущем случае, приведены на рис Рис. 7: Численное решение задачи с помощью явной схемы с граничным условием.5. 9

10 Рис. 8: Погрешность решения задачи с помощью явной схемы с граничным условием.5. Также для получения схемы, имеющей погрешность аппроксимации O +, можно аппроксимировать граничное условие Неймана при x = 1 с помощью трехточечной первой разностной производной: 3 4yj yj+1 Переписывая это уравнение в виде = t j+1, j = 0, 1. M 1. = 4 3 yj yj+1 + t j+1 3,.6 мы можем использовать его для завершения перехода на слой j + 1 при уже найденных 1 и yj+1. Погрешность вычислений по схеме с условием.6 приведена на рис. 9. Рис. 9: Погрешность решения задачи с помощью явной схемы с граничным условием.6. 10

11 Пример.. Постройте чисто неявную разностную схему для начально-краевой задачи.1. Сравните численное решение с аналитическим и исследуйте зависимость погрешности от шагов сетки. Решение. Используем ту же сетку, что и в предыдущем примере с той лишь разницей, что соотношение шагов и теперь может быть любым. Разностная аппроксимация уравнения в соответствии с неявной схемой имеет вид: y j = yj+1 1 yj x, = 1. 1, j = 0, 1. M 1..7 Дополним разностное уравнение.7 начальными и граничными условиями на сетке. Как и в случае явной схемы, начальное условие и граничное условие Дирихле при x = 0 аппроксимируются точно: y 0 3πx = sn, = 0, 1. ; 0 = 0, j = 1. M 1. Для аппроксимации граничного условия при x = 1 используем те же три способа, что и в случае явной схемы, разобранной в предыдущем примере. Первый вариант аппроксимации граничного условия Неймана при x = 1: yj+1 1 = t j+1, j = 1. M 1. Получающаяся при этом неявная разностная схема: y 0 3πx = sn, = 0, 1. 0 = 0, j = 0, 1. M 1, y j yj+1 1 = yj+1 1 yj x, = 1. 1, j = 0, 1. M 1, = t j+1, j = 0, 1. M 1.8 имеет погрешность аппроксимации O +. Значения сеточной функции y j на нулевом слое по времени известны из начального условия, поэтому при каждом фиксированном j = 0, 1. M 1 неизвестными являются. Система уравнений, которым они удовлетворяют, имеет вид: 0 = 0, yj = yj t j+1, + yj+1 +1 = y j + x, = 1. 1,.9 11

12 то есть является системой с трехдиагональной матрицей: 0 = κ µ 1, A 1 C + B +1 = F, = 1. 1, = κ 1 + µ,.10 где κ 1 = 0, µ 1 = 0, A = B =, C = 1 +, F = y j + x, κ = 1, µ = t j+1. Очевидно, что достаточные условия устойчивости прогонки: A > 0, B > 0, C A + B, C A + B, = 1. 1, 0 κ p 1, p = 1, для системы.9 выполнены. Решая систему.9 методом прогонки и последовательно увеличивая значения j на единицу, мы полностью решим систему.8. Результаты вычислений по неявной схеме.8 в случае = M = 50 приведены на рис Рис. 10: Численное решение задачи.1 с помощью неявной схемы.8. Рис. 11: Погрешность численного решения задачи.1 с помощью неявной схемы.8. 1

13 Второй вариант аппроксимации граничного условия Неймана при x = 1: 1 = t j yj, j = 0, 1. M В этом случае для неизвестных при каждом фиксированном j получаем трехдиагональную систему вида.10, где κ = 1 1 +, µ = κ t j yj Погрешность расчетов по соответствующей неявной схеме в случае = M = 50 приведена на рис. 1.. Рис. 1: Погрешность решения задачи.1 с помощью неявной схемы с граничным условием.11. Третий вариант аппроксимации граничного условия Неймана при x = 1: = 4 3 yj yj+1 + t j+1 3 Для того, чтобы получить для неизвестных.1 систему с трехдиагональной матрицей при каждом фиксированном j, исключим из уравнения.1 неизвестное. Для этого воспользуемся уравнением.7 при = 1: yj yj yj+1 = F 1. Следовательно, = + 1 yj+1 F 1, 13

14 и уравнение.1 принимает вид: = 1 В результате для неизвестных.10, где κ = 1, 1 + F 1 + t j+1. приходим к системе с трехдиагональной матрицей вида µ = F 1 + t j+1. Погрешность расчетов по соответствующей схеме в случае = M = 50 приведена на рис. 13. Рис. 13: Погрешность численного решения задачи.1 с помощью неявной схемы с граничным условием.1. Пример.3. Постройте симметричную разностную схему схему с весом σ = 0.5 для начально-краевой задачи.1. Сравните численное решение с аналитическим и исследуйте зависимость погрешности от шагов сетки. Решение. Аппроксимация уравнения u t = u x + x в соответствии с симметричной разностной схемой имеет вид: y j = 1 y j+1 1 yj yj 1 yj + yj +1 + x,.13 где = 1. 1, j = 0, 1. M 1. Разностное уравнение.13 аппроксимирует исходное дифференциальное уравнение теплопроводности с погрешностью O + на всех внутренних узлах сетки. 14

15 Начальное условие и условие Дирихле при x = 0 аппроксимируются так же, как и в двух рассмотренных ранее случаях. Граничное условие Неймана при x = 1 можно аппроксимировать как с первым, так и со вторым порядком по. Если в качестве аппроксимации условия при x = 1 берется разностное уравнение yj+1 1 = t j+1, j = 1. M 1, то схема будет иметь погрешность аппроксимации O +. Соответствующая система для неизвестных будет трехдиагональной: 0 = 0, A 1 C + B +1 = F, = 1. 1, = yj t j+1,.14 где A = B =, C = 1 + A, F = y j + x + yj 1 yj + yj +1. Достаточные условия устойчивости прогонки для системы.14 выполнены. Погрешность решения задачи по схеме.14 для = M = 50 приведена на рис. 14. Рис. 14: Погрешность численного решения задачи.1 с помощью симметричной схемы. Построим аппроксимацию граничного условия Неймана при x = 1 с погрешностью O +. Рассмотрим равенство: ux, t ux, t = ux, t x ux, t t x + O,.15 где ux, t решение исходной задачи.1. Положим в равенстве.15 t = t j Так как ux, t j ux, t j =

16 и получаем: 1 = 1 u j uj 1 + uj+1 ux, tj ux, t j ux, t t t=tj +0.5 u j+1 1 = ux, t x + ux, t j+1 ux, t j+1 + O = ux, t j+1 ux, t j x,t j O, u j+1 u j x + O +. Перейдем в полученном равенстве к пределу при x 1 то есть при, учитывая граничные условия задачи: 1 u j uj 1 + uj+1 uj = t j Следовательно, разностное уравнение y j yj 1 + yj+1 yj+1 1 = t j +0.5 будет аппроксимировать условие u x = t x=1 yj u j+1 uj с погрешностью O +. Соответствующая система для вид: где 0 = 0, 1 1 A 1 C + B +1 = F, = 1. 1, = κ 1 + µ, 1 κ = 1 +, µ = κ 1 + yj + O +., j = 0, 1. M 1.16 при фиксированном j имеет + t j + y j + yj Погрешность, получаемая при численном решении задачи с использованием граничного условия.16, для = M = 50 приведена на рис. 15. Такой же порядок погрешности аппроксимации можно получить, используя граничное условие = 4 3 yj yj+1 + t j Исключим из этого уравнения неизвестное, используя уравнение.13 при = 1: Так как yj yj+1 = F 1. = + 1 yj+1 F 1, 16

17 Рис. 15: Погрешность численного решения задачи.1 с помощью симметричной схемы с граничным условием.16. уравнение.18 можно переписать в виде: = F 1 + t j+1. В результате мы снова придем к системе с трехдиагональной матрицей вида.17 для неизвестных при каждом фиксированном j = 0, 1. M 1, где теперь κ = 1, µ = F 1 + t j+1. Погрешность решения по предложенной схеме при = M = 50 приведена на рис. 16. Рис. 16: Погрешность решения задачи с помощью симметричной схемы с граничным условием

18 3 Задачи для самостоятельного решения Решите аналитически и численно при помощи явной, неявной и симметричной схем начальнокраевую задачу для уравнения теплопроводности на отрезке: u t = u a + fx, t, x 0, l, t 0, T ], x ux, 0 = u 0 x, u γ 0 x + δ 0u = g 0 t, x=0 u γ 1 x + δ 1u = g 1 t, x=l где: x а a =, f = cos e t, u 0 = π x, γ 0 = 1, δ 0 = 0, γ 1 = 0, δ 1 = 1, g 0 = 1, g 1 = 0, l = π; б a = 1, f = e t x / 1, u 0 = 1 + e t x /, γ 0 = 1, δ 0 = 0, γ 1 = 1, δ 1 = 0, g 0 = 0, g 1 = e t, l = 1; в a = 0.5, f = e t, u 0 = 1 + sn 3x, γ 0 = 0, δ 0 = 1, γ 1 = 1, δ 1 = 0, g 0 = e t, g 1 = 0, l = π/; 3πx г a = 1, f = 0, u 0 = 3 x + cos, γ 0 = 1, δ 0 = 0, γ 1 = 0, δ 1 = 1, g 0 = 1, g 1 = 1, l = ; 4 д a = 0.1, f = 0, u 0 = cosπx + x + x, γ 0 = 1, δ 0 = 0, γ 1 = 1, δ 1 = 0, g 0 = 1, g 1 = 5, l =. Сравните результаты численного решения по разным схемам между собой и с аналитическим решением задачи. 18

Разностные схемы для уравнения теплопроводности

3.1. Исходная задача. Будем рассматривать следующую первую краевую задачу для уравнения теплопроводности с постоянными коэффициентами. В области <0 n i = y(xi, tn),

Иногда для упрощения записи индексы i и n будем опускать, обозначая

Чтобы аппроксимировать уравнение (1) в точке (xi, tn), введем шаблон, изображенный на рисунке и состоящий из четырех узлов (xi±1, tn), (xi, tn), (xi, tn+1). Производную ¶u/¶t заменим в точке (xi, tn) разностным отношением y n t, i, а производную ¶ 2 u/¶ 2 x – второй разностной производной y n xx, i. Правую часть f(x, t) заменим приближенно сеточной функцией j n i, в качестве j n i можно взять одно из следующих выражений:

В результате получим разносное уравнение

которое аппроксимирует исходное дифференциальное уравнение в точке (xi, tn) с первым порядком по t и вторым порядком по h при условии, что разность j n i – f(xi, tn) имеет тот же порядок малости.

Под разностной схемой понимается совокупность разностных уравнений, аппроксимирующих основное дифференциальное уравнение во всех внутренних узлах сетки и дополнительные (начальные и граничные) условия – в граничных узлах сетки. Разностную схему по аналогии с дифференциальной задачей будем называть также разностной задачей. В данном случае разностная схема имеет вид

Эта схема представляет собой систему линейных алгебраических уравнений с числом уравнений, равным числу неизвестных. Находить решение такой системы следует по слоям. Решение на нулевом слое задано начальными условиями y 0 i = u0(xi), i = 0, 1,…, N. Если решение y n i, i = 0, 1,…, N, на слое n уже найдено, то решение yi n+1 на слое n+1 находится по явной формуле

а значения доопределяются из граничных

условий. По этой причине схема (6) называется явной разностной схемой. Несколько позже мы познакомимся и с неявными схемами, в которых для нахождения yi n+1 при заданных yi n требуется решать систему уравнений.

Погрешность разностной схемы (6) определяется как разность zi n = yi n – u(xi, tn) между решением задачи (6) и решением исходной задачи (1) – (3). Подставляя в (6) yi n = zi n + u(xi, tn), получим уравнение для погрешности

где – погрешность аппроксимации разностной

схемы (6) на решении задачи (1) – (3), y i n = O( t + h 2 ). Можно оценить решение zi n уравнения (8) через правую часть yi n и доказать тем самым сходимость разностной схемы (6) с первым порядком по t и вторым – по h. Однако это исследование мы отложим, а сейчас на примере схемы (6) продемонстрируем один распространенный прием исследования разностных схем с постоянными коэффициентами, называемый методом гармоник. Хотя данный метод не является достаточно обоснованным, в частности не учитывает влияния граничных условий и правых частей, он позволяет легко найти необходимые условия устойчивости и сходимости разностных схем. Покажем, например, что явную схему (6) можно применять лишь при условии t £ 0,5h 2 , означающем, что шаг по времени надо брать достаточно малым.

т.е. однородное уравнение, соответствующее (5). Будем искать частные решения (9), имеющие вид

yj n ( j ) = q n e ijh j , (10)

где i – мнимая единица, j – любое действительное число и q – число, подлежащее определению. Подставляя (10) в уравнение (9) и сокращая на e ijh j , получим

Начальные условия соответствующие решениям вида (10) (их называют гармониками), ограничены. Если для некоторого j множитель q станет по модулю больше единицы, то решение вида (10) будет неограниченно возрастать при n®¥. В этом случае разностное уравнение (9) называется неустойчивым, поскольку нарушается непрерывная зависимость его решения от начальных условий. Если же |q| £ 1 для всех действительных j, то все решения вида (10) ограничены при любом n и разностное уравнение (9) называется устойчивым. В случае неустойчивости найти решение разностной задачи (6) по формулам (7) практически невозможно, так как погрешности (например погрешности округления), внесенные в начальный момент времени, будут неограниченно возрастать при увеличении n. Такие разностные схемы называются неустойчивыми.

Для уравнения (9) неравенство |q| £ 1 выполняется согласно (11) при всех j тогда и только тогда, когда g £ 0,5. Таким образом, использование схемы (6) возможно лишь при выполнении условия t £ 0,5h 2 . Разностные схемы, устойчивые лишь при некотором ограничении на отношение шагов по пространству и по времени, называются условно устойчивыми. Следовательно, схема (6) возможно устойчива, причем условие устойчивости имеет вид t/h 2 £ 0,5. Условно устойчивые схемы для уравнений параболического типа используются редко, так как они накладывают слишком сильное ограничение на шаг по времени. Действительно, пусть, например, h = 10 -2 . Тогда шаг t не должен превосходить 0,5 * 10 -4 , и для того чтобы вычислить решение yj n при t = 1, надо взять число шагов по времени n = t -1 ³ 2 * 10 4 , т.е. провести не менее 2 * 10 4 вычислений по формулам (7).

3.3. Неявные схемы. Чисто неявной разностной схемой для уравнения теплопроводности теплопроводности (схемой с опережением) называется разностная схема, использующая шаблон (xi, tn), (xi ± 1 , tn+1), (xi, tn+1) и имеющая вид

Здесь j n i = f(xi, tn+1) + O( t + h 2 ). Схема имеет первый порядок аппроксимации по t и второй – по h. Решение системы (12) находится, как и в случае явной схемы, по слоям, начиная с n = 1. Однако, теперь, в отличие от явной схемы, для нахождения y i n+1 по известным yi n требуется решить систему уравнений

где g = t /h 2 , Fi n = yi n + t j i n . Эту систему можно решать методом прогонки, так как условия устойчивости прогонки выполнены.

Для исследования устойчивости разностной схемы (12) будем искать частные решения уравнения

имеющие вид (10). Тогда получим

следовательно, |q| £ 1 при любых j , t , h. Таким образом, схема (12) абсолютно устойчива, т.е. устойчива при любых шагах t и h. Абсолютная устойчивость является основным условием неявных схем. Теперь уже не надо брать шаг t слишком малым, можно взять, например, t = h = 10 -2 . Величина шагов сетки t , h определяются теперь необходимой точностью расчета, а не соображениями устойчивости.

Шеститочечной симметричной схемой называется разностная схема

для которой начальные и граничные условия задаются так же, как и в схеме (12). Эта схема использует шеститочечный шаблон, изображенный на рисунке.

Обобщением трех рассмотренных схем является однопараметрическое семейство схем с весами. Зададим произвольный действительный параметр s и определим разностную схему

При s = 0 получим отсюда явную схему, при s = 1 – чисто неявную схему и при s = 0,5 – симметричную схему (14). Исследуем погрешность аппроксимации схемы (15) на решении исходной задачи (1) – (3). Представим решение задачи (15) в виде yi n = u(xi, tn) + zi n , где u(xi, tn) – точное решение дифференциальной задачи (1) – (3). Тогда для погрешности получим систему уравнений

i = 1, 2,…, N – 1, n = 0, 1,…, K – 1,

Сеточная функция yi n , входящая в правую часть уравнения (16) и равная

(17)

называется погрешностью аппроксимации схемы (15) на решении задачи (1) – (3). Получим первые члены разложения функции yi n по степеням h и t. Будем разлагать все функции, входящие в выражение для yi n , по формуле Тейлора в точке (xi, tn + 0,5t). Учитывая разложения

Отсюда, проводя разложение в точке (xi, tn+1/2) и обозначая u = u (xi, tn+1/2), будем иметь

и, перегруппировывая слагаемые, получим, что

Учитывая уравнение (1) u’’ – u = – f и следствие из него u IV – u’’ = –f’’, окончательно можно записать, что

Из формулы (18) можно сделать следующие выводы. Если

то схема (15) имеет второй порядок аппроксимации по t и четвертый – по h. Такая схема называется схемой повышенного порядка аппроксимации. Если

то схема (15) имеет второй порядок аппроксимации по t и по h. При остальных значениях s и при j i n º 0 в виде (10), то получим

и |q| £ 1 при всех j, если

Отсюда видно, в частности, что все схемы с s ³ 0,5 абсолютно устойчивы. Схема повышенного порядка аппроксимации (s = s*) также абсолютно устойчива, что проверяется непосредственно.

При s ¹ 0 разностная схема (15) является неявной схемой. Для нахождения решения yi n+1 по заданным yi n требуется решать систему уравнений

где

Система (20) решается методом прогонки. Условия устойчивости прогонки при s ¹ 0 сводятся к неравенству

|1 + 2 s g | ³ 2 | s | g

и выполнены при s ³ – 1/(4g). Последнее неравенство следует из условия устойчивости (19) разностной схемы.

3.4. Уравнения с переменными коэффициентами и линейные уравнения. Рассмотрим первую краевую задачу для уравнения теплопроводности с переменными коэффициентами

где r (x, t), k(x, t), f(x, t) – достаточно гладкие функции, удовлетворяющие условиям

Дифференциальное выражение при каждом

фиксированном t аппроксимируем в точке (xi, t) так же, как и в стационарном случае, разностным отношением

где разностный коэффициент теплопроводности a(xi, t) должен удовлетворять условиям второго порядка аппроксимации

Наиболее употребительны следующие выражения для a(xi, t):

Разностная схема с весами для задачи (21) имеет вид

Здесь в качестве t можно взять любое значение t Î [tn, tn+1], например t = tn + 0,5 t. Если в уравнении (24) t = tn + 0,5 t , s = 0,5, то схема (24) имеет второй порядок аппроксимации по t и по h. При остальных значениях s и t выполняется первый порядок аппроксимации по t и второй – по h.

При исследовании устойчивости разностных схем с переменными коэффициентами иногда применяется принцип замороженных коэффициентов, сводящий задачу к уравнению с постоянными коэффициентами. Рассмотрим явную схему, соответствующую уравнению (24) с s = 0 и f(xi, t) º 0, т.е. схему

Предположим, что коэффициенты r (xi, t), a(xi, t) – постоянные, r (xi, t) º r = const, a(xi, t) º a = const. Тогда уравнение (25) можно записать в виде

или

Из п.2 известно, что последнее уравнение устойчиво при t ’ £ 0,5h 2 , т.е. при

Принцип замороженных коэффициентов утверждает, что схема (25) устойчива, если условие (26) выполнено при всех допустимых значениях a(xi, t), r (xi, t), т.е. если при всех x, t выполнены неравенства

Если известно, что 0 0, то неравенство (27) будет выполнено при

Строгое обоснование устойчивости схемы (25) будет дано в примере 2 из главы 2.

Если параметр s ³ 0,5, то из принципа замороженных коэффициентов следует абсолютная устойчивость схемы (24).

Рассмотрим теперь первую краевую задачу для нелинейного уравнения теплопроводности

В случае нелинейных уравнений, когда заранее неизвестны пределы изменения функции k(u), избегают пользоваться явными схемами. Чисто неявная схема, линейная относительно yi n+2 , i = 1, 2,…, N – 1, имеет вид

где ai = 0,5 (k(y n i) + k(y n i-1)). Эта схема абсолютно устойчива, имеет первый порядок аппроксимации по t и второй – по h. Решение yi n+1 , i = 1, 2,…, N – 1, находится методом прогонки. Заметим, что схему (29) можно записать в виде

Часто используется нелинейная схема

Для реализации этой схемы необходимо применить тот или иной итерационный метод. Например такой:

Здесь s – номер итерации. Как видим, нелинейные коэффициенты берутся с предыдущей итерации, а в качестве начального приближения для yi n+1 выбирается yi n . Это начальное приближение тем лучше, чем меньше шаг t. Число итераций M задается из соображений точности. В задачах с гладкими коэффициентами при k(u) ³ c1 > 0 часто бывает достаточно провести две – три итерации. Значения yi (S+1) на новой итерации находятся из системы (31) методом прогонки. При M = 1 итерационный метод (31) совпадает с разностной схемой (29).

Для приближенного решения нелинейного уравнения (28) применяются также схемы предиктор – корректор второго порядка точности, аналогичные методу Рунге – Кутта для обыкновенных дифференциальных уравнений. Здесь переход со слоя n на слой n+1 осуществляется в два этапа. Приведем пример такой схемы. На первом этапе решается неявная линейная система уравнений

из которой находятся промежуточные значения yi n+1/2 , i = 0, 1,…, N. Затем на втором этапе используется симметричная шеститочечная схема для уравнения (28), в которой нелинейные коэффициенты a(y), f(y) вычисляются при y = yi n+1/2 , т.е. схема

Явная разностная схема решения одномерного квазилинейного уравнения теплопроводности Текст научной статьи по специальности « Математика»

Аннотация научной статьи по математике, автор научной работы — Геренштейн Аркадий Васильевич, Хайрисламов Михаил Зинатуллаевич

Предлагается численный метод решения третьей смешанной задачи для одномерного квазилинейного уравнения теплопроводности параболического типа, основанный на использовании явной разностной схемы . Зависимость коэффициентов уравнения от температуры преодолевается введением новой искомой функции первообразной теплопроводности .

Похожие темы научных работ по математике , автор научной работы — Геренштейн Аркадий Васильевич, Хайрисламов Михаил Зинатуллаевич

EXPLICIT DIFFERENCE SCHEME FOR THE SOLUTION OF ONE-DIMENSIONAL QUASI-LINEAR HEAT CONDUCTIVITY EQUATION

Numerical method for the solution of the third mixed boundary value problem for one-dimensional quasi-linear heat conductivity equation of a parabolic type based on the use of explicit difference scheme is given. Dependence of coefficients on temperature is overcome by the introduction of the new required function that is a primitive integral of conductivity.

Текст научной работы на тему «Явная разностная схема решения одномерного квазилинейного уравнения теплопроводности»

ЯВНАЯ РАЗНОСТНАЯ СХЕМА РЕШЕНИЯ ОДНОМЕРНОГО КВАЗИЛИНЕЙНОГО УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ

Л.Б. Геренштеин, М.З. Хаирисламов

Предлагается численный метод решения третьей смешанной задачи для одномерного квазилинейного уравнения теплопроводности параболического типа, основанный на использовании явной разностной схемы. Зависимость коэффициентов уравнения от температуры преодолевается введением новой искомой функции — первообразной теплопроводности.

Ключевые слова: теплопроводность, квазилинейное уравнение теплопроводности, явные разностные схемы, аппроксимация.

В настоящей работе используются идеи, изложенные в работах [1,2], в которых была предложена и обоснована явная устойчивая схема для линейного уравнения теплопроводности.

Рассмотрим следующую постановку третьей смешанной задачи для одномерного однородного квазилинейного уравнения [3]:

Шаблон разностной схемы

йОі(і) .О-і(ґ) — 2О,(і) + Оі+і(і)

і є [0; т], і = 2. N -1.

Аппроксимируем значения (0 и С;+1 (0 с точностью до членов первого порядка малости:

О,- (Г) — 0-1 (0) + ^ (0У, о1+1 (Г) — о1+1 (0) + ^ (0У.

В результате уравнение (3) преобразуется к виду

а 2(иі) ( Оі-і (0) + О,+1(0) + Г &О-І (0) + &О+1 (0) 1 і’

Погрешность аппроксимации оказывается равной О

, даже если производные

(0) вычисляются по формулам первого порядка точности.

Решением уравнения (4) является функция

1 г йО, . + йО,+, > в = О,-1 (0) + О,+1 (0) ‘-2

+ Аі + В, і є [0; т], — А •-

Для обозначения значений сеточной аппроксимации функции С на следующем временном слое будем использовать верхний индекс (+1), а на предыдущем — верхний индекс (-1), на сле-

дующем полуцелом временном слое — I +— I, а на предыдущем полуцелом временном слое —

— (см. рисунок). Запишем теперь разностные аппроксимации для производных ——(0) и

йО ,-1_ (0) = О-12* — О>-12

Окончательно расчетная формула приобретает вид

О(+1 = (О, — В)е п + Ат + В,

1′ «в = О-1 + О+1 — А •- п

Для расчета значений функции С на временном слое і = т, а также для вычисления значений функции в полуцелых слоях по времени можно воспользоваться формулами:

Для применения формул (5)-(7) необходимо по данному значению (7; найти температуру м; та-

кую, что Gj = | с/(д)с/д . В силу монотонности функции С(п) эту задачу можно решить методом 0

деления отрезка пополам (дихотомии).

Аппроксимация краевых условий

Для выполнения краевых условий введены фиктивные узлы с номерами 0 и N +1 (см. рисунок): сначала рассчитываются значения искомой функции во внутренних точках, после чего исходя из краевых условий задаются ее значения в фиктивных узлах.

Перепишем краевое условие на левом конце в задаче (1) с учетом замены искомой функции:

30 =Я1 (и (0, 0) ( — и (0, Г)) + а . (8)

Обозначим через функцию, обратную к функции С, производную ——————-

———, а значение (1(0. і) — полусуммой (1(0. і) = ——. То-

гда условие (8) может быть записано в виде

Обозначив z = G-11 ——— |. из (9) получим уравнение относительно z :

2• G(z)-Л, (z)( -z) = ^ + Qt.

Считаем, что функции q. Для вычисления функций в остальных точках температуры используется ку-сучно-линейная аппроксимация. Поэтому уравнение (10) на каждом промежутке [г;;г;+1],

/’ = 1, т -1 является в общем случае квадратным. Несложные выкладки позволяют записать его в виде

A = q(zi+і) — q(zi) + Mzh±)z¥zA

B = 2 ^ q( zi) zi+1 — q( zi+і) zi Лі (zi+і) -Лі (zt) в + Лі (zi )zi+1 -Лі (z,+1) z,

jWf- q( z, ) z, + q( Z +1) — q (Zi) •

Л (ZI )Zi+1 — Лі (ZI+1)Z± в — — Q

Если г* — корень уравнения (11), принадлежащий промежутку [г,; г1+] \. то искомое значение С0 в фиктивном узле с номером 0 будет равно

Рассуждения для правого конца стержня аналогичны.

Результаты численных расчетов

Для проведения расчетов взята следующая третья смешанная задача:

= Л, (u (0, t)) ( — u (0, t)) + Qt,

= Лг (u(L, t)) (r -u(L, t)) + Qr

где T = 100 c, L = 1 m, % = 22 °C, в, = 1400 °C, Qr = 1400 °C, О, = 105 Дж/(м‘с) , Qr =0 Дж/(м2с), а функции c(u), q(u), Л,(и) и Лг(и) заданы в табл. 1.

Значения входных параметров задачи, являющихся функциями температуры

Параметр Температура, °С

0 100 200 300 400 500 600 700 S00 1000

ф), 10б Дж/(м3-°С) 3,414 3,56S 4,040 4,347 4,S12 5,272 5,SS6 7,2S6 7,21S 7,21S

q(u), Дж/(м3-°С) 22,5 23,4 24,S 2б,7 27,2 27,7 2S,1 2S,6 27 27

Л,(и), Дж/(м2-с-°С) 100 100 110 120 130 140 150 160 170 170

Лг(и), Дж/(м2-с-°С) 100 120 130 140 150 150 150 150 150 150

Результаты численных расчетов по предложенной схеме приведены в табл. 2. В связи с тем, что точное решение задачи (12) неизвестно, проводилось сравнение решения, полученного по предложенной схеме, с решением, полученным по чисто неявной схеме, которая является безусловно сходящейся [3, 5].

Максимальная относительная погрешность решения в сравнении с решением по чисто неявной схеме

Величина шага по времени г, с

Число узлов N 0,01 0,05 0,1 0,5

40 4,7 -10-4 4,5 -10-4 1,52 -10-3 1,72 -10-3

60 1,12 10-3 1,12 10-3 1,19 10-3 2,18 -10-3

80 9,9 -10-4 1,0 10-3 1,06 10-3 2,15 -10-3

100 7,5 -10-4 7,7 -10-4 8,7 -10-4 2,25 -10-3

150 4,2 -10-4 4,7 -10-4 5,9 -10-4 2,43 -10-3

200 2,7 -10-4 3,4 -10-4 5,0 -10-4 2,67 -10-3

1. Геренштейн, А.В. Нагревание круга движущимся теплоисточником / А.В. Геренштейн,

Н. Машрабов // Обозрение прикладной и промышленной математики. — 2008. — Т. 15, №5. -С.870-871.

2. Геренштейн, А.В. Устойчивые явные схемы для уравнения теплопроводности / А.В. Геренштейн, Е.А. Геренштейн, Н. Машрабов // Вестник ЮУрГУ. Серия «Математическое моделирование и программирование». — 2008. — Вып. 1. — № 15(115). — С. 9-11.

3. Самарский, А.А. Теория разностных схем / А.А. Самарский. — М.: Наука, 1989. — 616 с.

4. Годунов, С.К. Разностные схемы / С.К. Годунов, B.C. Рябенький. — М.: Наука, 1977. -440 с.

5. Калиткин, Н.Н. Численные методы / Н.Н. Калиткин; под. ред. А.А. Самарского. — М.: Наука, 1978.- 512 с.

6. Шуп, Т. Решение инженерных задач на ЭВМ / Т. Шуп. — М.: Мир, 1982. — 235 с.

7. Геренштейн, А.В. Расчет температурных полей в цилиндре при действии поверхностных тепловых источников «Тепло 4.0» / А.В. Геренштейн, Н. Машрабов, Е.А. Геренштейн // Государственная регистрация в Отраслевом фонде алгоритмов и программ № 9776, 20.02.2008. — М.: ФГНУ ГКЦИТ, 2008.

8. Машрабов, Н. Расчет температурных полей в цилиндре при действии поверхностных теп-

ловых источников «Тепло 5.0» / Н. Машрабов, А.В. Геренштейн, Е.А. Геренштейн // Свидетельство о государственной регистрации программ для ЭВМ №2008612210, 30.04.2008,

EXPLICIT DIFFERENCE SCHEME FOR THE SOLUTION OF ONE-DIMENSIONAL QUASI-LINEAR HEAT CONDUCTIVITY EQUATION

A.V. Herreinstein1, M.Z. Khayrislamov2

Numerical method for the solution of the third mixed boundary value problem for one-dimensional quasi-linear heat conductivity equation of a parabolic type based on the use of explicit difference scheme is given. Dependence of coefficients on temperature is overcome by the introduction of the new required function that is a primitive integral of conductivity.

Keywords: thermal conductivity, quasi-linear heat conductivity equation, explicit difference schemes, approximation.

1. Herreinstein A.V., Mashrabov N. Nagrevanie kruga dvizhushhimsya teploistochnikom [Circle heating by moving heat source]. Obozrenieprikladnoj ipromyshlennoj matematiki. 2008. Vol. 15, no. 5. pp. 870-871. (in Russ.).

2. Herreinstein A.W., Herreinstein E.A., Mashrabov N. Ustojchivye yavnye skhemy dlya urav-neniya teploprovodnosti [Steady Obvious Schemes for Equation of Heat Conductivity]. Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie». 2008. Issue 1. no. 15(115). pp. 9-11. (in Russ.).

3. Samarskij A.A. Teoriya raznostnykh skhem [Theory of difference schemes]. Moscow: Nauka, 1989. 616 p. (in Russ.).

4. Godunov S.K., Ryaben’kij B.C. Raznostnye skhemy [Difference schemes]. M.: Nauka, 1977. 440 p. (in Russ.).

5. Kalitkin N.N. Chislennye metody [Numerical methods]. M.: Nauka, 1978. 512 p. (in Russ.).

6. Shup T. Reshenie inzhenernykh zadach na EVM [The solution of engineering problems with a computer]. Moscow: Mir, 1982. 235 p. (in Russ.).

7. Herreinstein A.V., Mashrabov N., Herreinstein E.A. Raschet temperaturnykh polej v cilindre pri dejstvii poverxnostnykh teplovykh istochnikov «Teplo 4.0» [Calculation of temperature patterns in a cylinder at surface heat sources “Teplo 4.0” effect]. Gosudarstvennaya registraciya v Otraslevom fonde algoritmov iprogramm № 9776. 20.02.2008. Moscow: FGNU GKCIT, 2008. (in Russ.).

8. Mashrabov N., Herreinstein A.V., Herreinstein E.A. Raschet temperaturnykh polej v cilindre pri dejstvii poverkhnostnykh teplovykh istochnikov «Teplo 5.0» [Calculation of temperature patterns in a cylinder at surface heat sources “Teplo 5.0” effect]. Svidetel’stvo o gosudarstvennoj registracii programm dlya EVM №2008612210. 30.04.2008. ROSPATENT [Certificate of state registration of computer program No. 2008612210. 30.04.2008. ROSPATENT], (in Russ.).

Поступила в редакцию 27 декабря 2012 г.

1 Herreinstein Arcady Vasilevich is Cand. Sc. (Physics and Mathematics), Associate Professor, Applied Mathematics Department, South Ural State University.

2 Khayrislamov Mikhail Zinatullaevich is Post-Graduate student, Applied Mathematics Department, South Ural State University.


источники:

http://megaobuchalka.ru/17/21662.html

http://cyberleninka.ru/article/n/yavnaya-raznostnaya-shema-resheniya-odnomernogo-kvazilineynogo-uravneniya-teploprovodnosti