Явная схема решения уравнения теплопроводности

Уравнение теплопроводности

Ранее (см. разд. 2.1.2, 2.1.3) уже были построены и исследованы разностные схемы решения смешанной задачи для одномерного уравнения теплопроводности:

(2.75)

Были получены две двухслойные схемы — явная (2.3) и неявная (2.4). В явной схеме значения сеточной функции на верхнем (j + 1)-ом слое вычисляли с помощью решения на нижнем слое [соотношение (2.13)]. Для нахождения решения на (j + 1)-м слое по неявной схеме была получена трехдиагональная система линейных алгебраических уравнений (2.22), которую решают методом прогонки.

Неявная схема безусловно устойчива, явная схема устойчива при выполнении условия

Обе схемы сходятся к решению исходной задачи со скоростью .

Схемы (2.3), (2.4) построены для случая, когда значения искомой функции (температуры) Uна границах х = 0, х = 1определяются заданными функциями . Однако граничные условия в смешанной задаче (2.75) могут быть и иными, в них может входить производная искомой функции. Например, если конец стержня х=0 теплоизолирован, то условие имеет вид

В этом случае, как и при решении волнового уравнения, данное условие нужно записывать в схемах (2.3), (2.4) в разностном виде.

Перейдем теперь к построению разностных схем для уравнения теплопроводности с двумя пространственными переменными. Примем для простоты а = 1. Тогда это уравнение можно записать в виде

(2.76)

Пусть при t=0 начальное условие задано в виде

(2.77)

В отличие от волнового уравнения, требующего два начальных условия, в уравнение теплопроводности входит только первая производная по t, и необходимо задавать одно начальное условие.

Часто задачи теплопроводности или диффузии, описываемые двумерным уравнением (2.76), решаются в ограниченной области. Тогда, кроме начального условия (2.77), нужно формулировать граничные условия. В частности, если расчетная область представляет прямоугольный параллелепипед (рис. 2.24), то нужно задавать граничные условия на его боковых гранях. Начальное условие (2.77) задано на нижнем основании параллелепипеда.

Рис. 2.24. Расчетная область

Введем простейшую сетку с ячейками в виде прямоугольных параллелепипедов, для чего проведем три семейства плоскостей: хi= ih1(i=0,1. I), (j=0,1. J), . Значение сеточной функции в узлах обозначим символом . С помощью этих значений можно построить разностные схемы для уравнения (2.76).

Рассмотренные выше схемы для одномерного уравнения легко обобщаются на двумерный случай.

Построим явную разностную схему, шаблон которой изображен на рис. 2.25. Аппроксимируя производные отношениями конечных разностей, получаем следующее сеточное уравнение:

Рис. 2.25. Шаблон двумерной схемы

Отсюда можно найти явное выражение для значения сеточной функции на (k + 1)-ом слое:

(2.78)

Условие устойчивости имеет вид

(2.79)

При получается особенно простой вид схемы (2.78):

(2.80)

Полученная схема сходится со скоростью

Формулы (2.78) или (2.80) представляют собой рекуррентные соотношения для последовательного вычисления сеточной функции во внутренних узлах слоев k = 1,2. К. На нулевом слое используется начальное условие (2.77), которое записывается в виде

(2.81)

Значения в граничных узлах вычисляют с помощью граничных условий.

Алгоритм решения смешанной задачи для двумерного уравнения теплопроводности изображен на рис. 2.26. Здесь решение хранится на двух слоях: нижнем (массив ) и верхнем (массив ). Блоки граничных условий необходимо сформировать в зависимости от конкретного вида этих условий. Результаты выводят на каждом слое, хотя можно ввести шаг выдачи (см. рис. 2.13).

Рис. 2.26. Алгоритм решения двумерного уравнения теплопроводности

Построим теперь абсолютно устойчивую неявную схему для решения уравнения (2.76), аналогичную схеме (2.4) для одномерного уравнения теплопроводности. Аппроксимируя в (2.76) вторые производные по пространственным переменным на (k + 1)-ом слое, получаем следующее разностное уравнение:

(2.82)

Это уравнение можно записать в виде системы линейных алгебраических уравнений относительно значений сеточной функции на каждом слое:

(2.83)

К этой системе уравнений нужно добавить граничные условия для определения значений сеточной функции в граничных узлах (т.е. при i= 0, I; j = 0, J). На нулевом слое решение находится из начального условия (2.77), представленного в виде (2.81).

Система (2.83), полученная для двумерного уравнения теплопроводности, имеет более сложный вид, чем аналогичная система (2.22) для одномерного случая, которую можно решить методом прогонки. Таким образом, распространение неявной схемы на многомерный случай приводит к значительному усложнению вычислительного алгоритма и увеличению объема вычислений.

Недостатком явной схемы (2.78) является жесткое ограничение на шаг по времени τ, вытекающее из условия (2.79). Существуют абсолютно устойчивые экономичные разностные схемы, позволяющие вести расчет со сравнительно большим значением шага по времени и требующие меньшего объема вычислений. Две из них будут рассмотрены в разд. 2.3.3.

Явная разностная схема для уравнения теплопроводности.

Используя шаблон для каждого внутреннего узла области решения апроксимируется уравнение теплопроводности

Используя начальные и граничные условия, находят значения сеточной функции во всех узлах на нулевом временном уровне.

Затем с помощью соотношений

находятся значения этих функций во всех внутренних узлах на первом временном уровне, после чего находим значение на граничных узлах

В результате мы находим значение функций во всех узлах на первом временном уровне. После этого с помощью этих соотношений находим все остальные значения и т.д.

В рассматриваемой разностной схеме значения искомой функции на следующем временном уровне находится непосредственно, явно с помощью формулы

Поэтому рассматриваемая разностная схема, использующая этот шаблон, называется явной разностной схемой. Точность её имеет порядок .

Данная разностная схема проста в использовании, однако она обладает существенным недостатком. Оказывается, что явная разностная схема обладает устойчивым решением только в том случае, если выполняется условие:

Явная разностная схема является условно устойчивой. Если условие не выполняется, то небольшие погрешности вычислений, например, связанные с округлением данных компьютера приводит к резкому изменению решения. Решение становится неприемлемым для использования. Это условие накладывает весьма жесткие ограничения на шаг по времени, что может оказаться неприемлемым из-за значительного увеличения времени счета решения этой задачи.

Рассмотрим разностную схему, использующую другой шаблон

Метод 36

Неявная разностная схема для уравнения теплопроводности.

Подставим в уравнение теплопроводности:

Это соотношение записывается для каждого внутреннего узла на временном уровне и дополняется двумя соотношениями, определяющими значения в граничных узлах. В результате получается система уравнений для определения неизвестных значений функции на временном уровне.

Схема решения задачи следующая:

С помощью начальных и граничных условий находится значение функции на нулевом временном уровне. Затем с помощью этих соотношений и граничных условий строится система линейных алгебраических уравнений для нахождения значения функции на первом временном уровне, после чего опять с помощью этих соотношений строится система, и находятся значения на втором временном уровне и т.д.

Отличие от явной схемы — значения на очередном временном уровне вычисляются не непосредственно с помощью готовой формулы, а находится путем решения системы уравнений, т.е. значения неизвестных находятся неявно путем решения СЛАУ. Поэтому разностная схема называется неявной. В отличие от явной неявная является абсолютно устойчивой.

Тема №9

Задачи оптимизации.

Эти задачи являются одними из важнейших задач прикладной математики. Под оптимизацией понимают выбор наилучшего варианта из всех возможных решений данной задачи. Для этого необходимо сформулировать решаемую задачу как математическую, придав количественный смысл понятиям лучше или хуже. Обычно в процессе решения необходимо найти оптимизируемые значения параметров. Эти параметры называют проектными. А число проектных параметров определяет размерность задачи.

Количественная оценка решения производится с помощью некоторой функции зависящей от проектных параметров. Эта функция называется целевой. Она строится таким образом, чтобы наиболее оптимальное значение соответствовало максимуму(минимуму).

— целевая функция.

Наиболее просты случаи, когда целевая функция зависит от одного параметра и задаётся явной формулой. Целевых функций может быть несколько.

Например, при проектировании самолёта требуется одновременно обеспечить максимальную надежность, минимальные вес и стоимость и т.д. В таких случаях вводится система приоритетов. Каждой целевой функции ставится в соответствие некоторый целевой множитель в результате получается обобщенная целевая функция(функция компромиссов).

Обычно оптимальное решение ограничено рядом условий связанных с физической функцией задачи. Эти условия могут иметь вид равенств или неравенств

Теория и методы решения задач оптимизации при наличии ограничений составляют предмет исследований одного из разделов прикладной математики – математического программирования.

Если целевая функция линейна относительно проектных параметров и ограничения, накладываемые на параметры также линейны, то возникает задача линейного программирования. Рассмотрим методы решения одномерной задачи оптимизации.

Требуется найти значения на при которых целевая функция имеет максимальное значение. Если целевая функция задана аналитически и может быть найдено выражение для её производных, то оптимальное решение будет достигаться либо на концах отрезка, либо в точках в которых производная обращается в ноль. Это критические точки и . Необходимо найти значения целевой функции во всех критических точках и выбрать максимальное.

В общем случае для нахождения решения применяют различные методы поиска. В результате происходит сужение отрезка содержащего оптимальное решение.

Рассмотрим некоторые из методов поиска. Предположим, что целевая функция на промежутке имеет один максимум. В этом случае, разбив узловыми точками , число которых , вычисляют целевую функцию в этих узловых точках. Предположим, что максимальное значение целевой функции будет в узле , тогда можно считать, что оптимальное решение находится на интервале . В результате произведено сужение отрезка, содержащего оптимальное решение. Полученный новый отрезок вновь разбивают на частей и т.д. При каждом разбиении отрезок, содержащий оптимальное решение уменьшаются в раз.

Предположим, что произведено шагов сужения. Тогда исходный отрезок уменьшается в раз.

То есть, делаем пока выполняется (*)

При этом производится вычислений целевой функции.

Требуется найти такое значение, чтобы выражение (*) было получено при наименьшем

числе вычислений .

Метод 37

Метод половинного деления.

Рассмотрим метод поиска при . Он называется методом половинного деления, так как на каждом шаге отрезок, содержащий оптимальное решение уменьшается в два раза.

Эффективность поиска можно повысить путём специального выбора точек, в которых вычисляется целевая функция на определённом шаге сужения.

Метод 38

Метод золотого сечения.

Одним из эффективных способов является метод золотого сечения. Золотым сечением отрезка называется точка для которой выполняется условие

Таких точек две: =0,382 +0,618

=0,618 +0,382 .

Отрезок делится точками и а после находится точка, целевая функция в которой максимальна. В результате чего находится изменённый отрезок длинною 0,618( ) .

Одно значение золотого отрезка для суженного отрезка уже известно, поэтому на каждом последующем шаге требуется вычисление целевой функции только в одной точке (второй точки золотого сечения ).

Метод 39

Метод покоординатного подъёма (спуска).

Перейдём к рассмотрению задачи оптимизации в случае, когда целевая функция зависит от нескольких значений параметров. Простейшим методом поиска является метод покоординатного подъёма (спуска).

Задаётся исходная точка . Затем фиксируются все координаты, кроме первой, в результате получаем целевую функцию, зависящую от одного проектного параметра

.

Для этой функции находится максимальное значение и точка, в которой этот максимум достигается.

Затем фиксируем все координаты, кроме , и получаем целевую функцию, зависящую также только от одного параметра. . Затем находим таким же способом остальные значения, пока не найдём . Это будет означать окончание первого итерационного шага и получение точки . Затем мы повторяем процедуру, пока не достигнем заданной точности.

Метод 40

Метод градиентного подъёма (спуска).

Более эффективен метод градиентного подъёма (спуска).

Нужно выбрать начальную точку и вычисляют значение градиента целевой функции в этой точке. Градиент определяет направление наибыстрейшего возрастания целевой функции из точки . Затем делают небольшой шаг в этом направлении и приходят в точку . В этой точке процедуру повторяют и т.д.

Лабораторная работа №7

Решение уравнений в частных производных методом сеток.

Решить одномерное уравнение теплопроводности методом сеток.

Используя явную схему метода сеток, проинтегрировать одномерное уравнение теплопроводности со следующими начальными и граничными условиями: , , , , .

Наиболее простой конечно-разностной схемой, применяемой для численного решения уравнений с частными производными, является явная схема. В случае одномерного уравнения теплопроводности она записывается следующим образом:

, j = 1, . , n , ( 10 )

где , n — число узлов cетки по x. ( 11 )

1. В первой строке введем названия параметров: n , l , c , Dx, g, m, Dt, a, b, а под ними в соответствующих ячейках — числовые значения (n=10, l=1, c=1). Для Dx вводим соответствующую формулу =B2/A2 (Dx=l/n). Исходя из условий устойчивости явной схемы, выбираем m=0,5 и выражаем Dt через m из уравнения ( 11 ) (=$D$2*$D$2*0,5).Для параметров функций, задающих краевые и начальные условия, выбираем следующие значения: g=8, a=10000, b=250.

2. В столбце А, как мы уже делали в предыдущих работах, разместим вычисление значений x, соответствующих узлам сетки. В третьей строке разместим формулы, вычисляющие значения узлов по времени. В столбце Вразместим формулы, вычисляющие начальное распределение температуры по длине стержня =EXP($E$2*A4-$E$2*A4*A4), а в четвертой и четырнадцатой строках, начиная со столбца С, -формулы, вычисляющие значения температуры на концах стержня: =EXP(-$H$2*C$3*C$3+$I$2*C$3).

3. В ячейку С5вводим формулу, реализующую конечно-разностное уравнение ( 10 ) —=B5+$F$2*(B6-2*B5+B4). Распространяем эту формулу на всю область, ограниченную краевыми и начальными условиями.

4. Результирующая таблица и построенная с использованием данных из блока A3:J14 диаграмма представлены на рис. 24 и 25.

Рис. 24. Решение одномерного уравнения теплопроводности с использованием явной схемы метода сеток.

Рис. 25. Графическое изображение решения одномерного уравнения теплопроводности.

Литература

1. Фигурнов В. Э. IBM PC для пользователя. 6-е изд. — М.: ИНФРА-М, 1995.

2. Шиб Й. Windows 3.1 (русская версия ) : Пер. с нем. — М. : БИНОМ, 1995.

3. Николь Н., Альбрехт Р. Электронные таблицы Excel 5.0: Практ. пособ. / Пер. с нем. — М.: ЭКОМ.,1995.

4. Наймершайм Дж. Excel 5.0 for Windows: Учебное пособие / Пер. с англ. — М.: Междунар. отношения, 1995.

5. Осейко Н. Н. Excel 5.0 для пользователя: — К.: Торгово — издательское бюро ВНV, 1994.

6. Альтхаус М. Excel. Секреты и советы / Пер. с нем. М.: БИНОМ, 1995.

7. Основы работы с Excel 5.0 : Методические указания / ИГХТА. — Иваново, 1996.

8. Численные методы : Методические указания / ИХТИ. — Иваново, 1988.

9. Методические указания и задания к практическим занятиям по вычислительной математике : Методические указания / ИХТИ. — Иваново, 1988.

10. Моделирование сложных изотермических реакций, описываемых линейными дифференциальными уравнениями : Методические указания / ИХТИ. — Иваново, 1992.

Оглавление

Лабораторная работа № 1. Основные элементы работы в EXCEL . . . 3

Лабораторная работа № 2. Построение графиков и диаграмм . . . . . . 7

Лабораторная работа № 3. Вычисление определенных интегралов . . 15

Лабораторная работа № 4. Решение систем линейных уравнений . . . 17

Лабораторная работа № 5. Обработка экспериментальных данных . 20

Лабораторная работа № 6. Решение обыкновенных дифференциаль-

ных уравнений и систем обыкновенных дифференциальных уравне-

Лабораторная работа № 7. Решение уравнений в частных производ-

ных методом сеток . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Дата добавления: 2015-02-09 ; просмотров: 18 ; Нарушение авторских прав


источники:

http://lektsia.com/6xc95e.html

http://lektsii.com/1-107751.html

Читайте также:
  1. DL – deadline – крайний срок сдачи работы – после DL работа принимается, но оценка снижается (20% за неделю, если не оговорено другое).
  2. E) Работа в цикле
  3. I. Самостоятельная работа
  4. I. Самостоятельная работа
  5. I. Самостоятельная работа
  6. I. Самостоятельная работа
  7. I. Самостоятельная работа
  8. I. Самостоятельная работа
  9. I. Самостоятельная работа
  10. I. Самостоятельная работа