Z в показательной форме уравнения

Формы записи комплексного числа

Алгебраическая форма комплексного числа

Запись комплексного числа $z$ в виде $z=a+b i$, где $a$ и $b$ — действительные числа, называется алгебраической формой комплексного числа.

Например. $z=1-i$

Подробнее о данной форме записи комплексных чисел по ссылке →

Тригонометрическая форма комплексного числа

Если $|z|=\sqrt+b^<2>>$ — модуль комплексного числа $z=a+b i$, а $\phi$ — его аргумент, то тригонометрической формой комплексного числа $z$ называется выражение

$z=|z|(\cos \phi+i \sin \phi)$

Задание. Записать число $z=1-i$ в тригонометрической форме.

Решение. Для получения тригонометрической формы заданного комплексного числа найдем вначале его модуль и аргумент. Так как $a=\operatorname z=1$, $b=\operatorname z=-1$, то

Тогда тригонометрическая форма заданного числа $z=1-i$ имеет вид:

$z=1-i=\sqrt<2>\left(\cos \left(-\frac<\pi><4>\right)+i \sin \left(-\frac<\pi><4>\right)\right)=\sqrt<2>\left(\cos \frac<\pi><4>-i \sin \frac<\pi><4>\right)$

Ответ. $z=\sqrt<2>\left(\cos \frac<\pi><4>-i \sin \frac<\pi><4>\right)$

Подробнее о данной форме записи комплексных чисел по ссылке →

Показательная форма комплексного числа

Показательной формой комплексного числа $z=a+b i$ называется выражение

Калькулятор комплексных чисел. Вычисление выражений с комплексными числами

Калькулятор комплексных чисел позволяет вычислять арифметические выражения, содержащие комплексные числа, знаки арифметических действий (+, -, *, /, ^), а также некоторые математические функции.

Калькулятор комплексных чисел

Как пользоваться калькулятором

  1. Введите в поле ввода выражение с комплексными числами
  2. Укажите, требуется ли вывод решения переключателем «С решением»
  3. Нажмите на кнопку «Построить»

Ввод комплексных чисел

комплексные числа можно вводить в следующих трёх форматах:

  • Только действительная часть: 2, 2.5, -6.7, 12.25
  • Только мнимая часть: i, -i, 2i, -5i, 2.16i, -12.5i
  • Действительная и мнимая части: 2+i, -5+15i, -7+2.5i, -6+i
  • Математические константы: π, e

Поддерживаемые операции и математические функции

  • Арифметические операции: +, -, *, /, ^
  • Получение абсолютного значения числа: abs
  • Базовые математические функции: exp, ln, sqrt
  • Получение действительной и мнимой частей: re, im
  • Тригонометрические функции: sin, cos, tg, ctg
  • Гиперболические функции: sh, ch, th, cth
  • Обратные тригонометрические функции: arcsin, arccos, arctg, arcctg
  • Обратные гиперболические функции: arsh, arch, arth, arcth

Примеры корректных выражений

  • (2+3i)*(5-7i)
  • sh(i)
  • (4+i) / (3 — 4i)
  • sqrt(2i)
  • (-3+4i)*2i / exp(2i + (15 — 8i)/4 — 3.75)

Комплексные числа

Комплексные числа — это числа вида x+iy , где x , y — вещественные числа, а i — мнимая единица (специальное число, квадрат которого равен -1, то есть i 2 = -1 ).
Так же, как и для вещественных чисел, для комплексных чисел определены операции сложения, разности, умножения и деления, однако комплексные числа нельзя сравнивать.

Примеры комплексных чисел

  • 4+3i — действительная часть = 4, мнимая = 3
  • -2+i — действительная часть = -2, мнимая = 1
  • i — действительная часть = 0, мнимая = 1
  • -i — действительная часть = 0, мнимая = -1
  • 10 — действительная часть = 10, мнимая = 0

Основные действия с комплексными числами

Основными операциями, определёнными для комплексных чисел, являются сложение, разность, произведение и деление комплексных чисел. Операции для двух произвольных комплексных чисел (a + bi) и (c + di) определяются следующим образом:

  • сложение: (a + bi) + (c + di) = (a + c) + (b + d)i
  • вычитание: (a + bi) — (c + di) = (a — c) + (b — d)i
  • умножение: (a + bi) · (c + di) = ac + bci + adi + bdi 2 = (ac — bd) + (bc + ad)i
  • деление:

Примеры

Найти сумму чисел 5+7i и 5.5-2i :
Найдём отдельно суммы действительных частей и сумму мнимых частей: re = 5 + 5.5 = 10.5, im = 7 — 2 = 5.
Запишем их рядом, добавив к мнимой части i: 10.5 + 5i
Полученное число и будет ответом: 5+7i + 5.5-2i = 10.5 + 5i

Найти разность чисел 12-i и -2i :
Найдём отдельно разности действительных частей и разности мнимых частей: re = 12 — 0 = 12, im = -1 — (-2) = 1.
Запишем их рядом, добавив к мнимой части i: 12 + 1i
Полученное число и будет ответом: 12-i — (-2i) = 12 + i

Найти произведение чисел 2+3i и 5-7i :
Найдём по формуле действительную и мнимую части: re = 2·5 — 3·(-7) = 31, im = 3·5 + 2·(-7) = 1.
Запишем их рядом, добавив к мнимой части i: 31 + 1i
Полученное число и будет ответом: 2+3i * (5-7i) = 31 + i

Найти отношение чисел 75-50i и 3+4i :
Найдём по формуле действительную и мнимую части: re = (75·3 — 50·4) / 25 = 1, im = (-50·3 — 75·4) / 25 = -18.
Запишем их рядом, добавив к мнимой части i: 1 — 18i
Полученное число и будет ответом: 75-50i / (3+4i) = 1 — 18i

Другие действия над комплексными числами

Помимо базовых операций сложения, вычитания, умножения и деления комплексных чисел существуют также различные математические функции. Рассмотрим некоторые из них:

  • Получение действительной части числа: Re(z) = a
  • Получение мнимой части числа: Im(z) = b
  • Модуль числа: |z| = √(a 2 + b 2 )
  • Аргумент числа: arg z = arctg(b / a)
  • Экспонента: e z = e a ·cos(b) + i·e a ·sin(b)
  • Логарифм: Ln(z) = ln |z| + i·arg(z)
  • Тригонометрические функции: sin z, cos z, tg z, ctg z
  • Гиперболические функции: sh z, ch z, th z, cth z
  • Обратные тригонометрические функции: arcsin z, arccos z, arctg z, arcctg z
  • Обратные гиперболические функции: arsh z, arch z, arth z, arcth z

Примеры

Найти действительную и мнимую части числа z, а также его модуль, если z = 4 — 3i
Re(z) = Re(4 — 3i) = 4
Im(z) = Im(4 — 3i) = -3
|z| = √(4 2 + (-3) 2 ) = √25 = 5

Формы представления комплексных чисел

Комплексные числа принято представлять в одной из трёх следующих форм: алгебраической, тригонометрической и показательной.

  • Алгебраическая форма — наиболее часто используемая форма комплексного числа, запись числа в виде суммы действительной и мнимой частей: x+iy , где x — действительная часть, а y — мнимая часть
  • Тригонометричкая форма — запись вида r·(cos φ + isin φ) , где r — модуль комплексного числа (r = |z|), а φ — аргумент этого числа (φ = arg(z))
  • Показательная форма — запись вида r·e iφ , где r — модуль комплексного числа (r = |z|), e — число Эйлера, а φ — аргумент комплексного числа (φ = arg(z))

Пример:

Переведите число 1+i в тригонометрическую и показательную формы:

  • Найдём радиус (модуль) комплексного числа r: r = √(1 2 + 1 2 ) = √2
  • Найдём аргумент числа: φ = arctan(

Z в показательной форме уравнения

Комплексным числом называется выражение вида z = x + iy , (7.1)

где x и y – действительные числа, а i так называемая мнимая единица. Соотношение для мнимой единицы

Если x =0, то число 0+ iy = iy называется чисто мнимым; если y =0, то число x + i 0= x отождествляется с действительным числом x , а это означает, что множество R всех действительных чисел является подмножеством множества C всех комплексных чисел, то есть .

Число x называется действительной частью комплексного числа z и обозначается x = Re z , а yмнимой частью комплексного числа z и обозначается y = Im z .

Понятия «больше» и «меньше» для комплексных чисел не вводятся.

Числа z = x + iy и называются комплексно сопряженными.

Всякое комплексное число z = x + iy можно изобразить точкой M ( x ; y ) плоскости x 0 y такой, что x = Re z , y = Im z . Верно и обратное: каждую точку M ( x ; y ) координатной плоскости можно рассматривать как образ комплексного числа z = x + iy (рис. 7.1).

Комплексное число z = x + iy можно задавать с помощью радиус-вектора . Длина вектора , изображающего комплексное число z , называется модулем этого числа и обозначается | z | или r . Величина угла между положительным направлением действительной оси и вектором называется аргументом комплексного числа, обозначается Arg z или φ.

Для комплексного числа z =0 аргумент не определен. Аргумент комплексного числа – величина многозначная и определяется с точностью до слагаемого k ( k =0;1;1;2;2…): , где arg zглавное значение аргумента, заключенное в промежутке (–π;π). Иногда в качестве главного значения аргумента берут величину, принадлежащую промежутку [0;2π).

Алгебраической формой комплексного числа называется з апись числа z в виде z = x + iy.

Модуль r и аргумент φ можно рассматривать как полярные координаты вектора , изображающего комплексное число z = x + iy (см. рис. 7.1). Тогда из соотно­шений сторон в прямоугольном треугольнике получа­ем

Равенство (7.3) есть тригонометрическая форма комплексного числа. Модуль r = |z| однозначно определяется по формуле

Аргумент определяется из формул:

При переходе от алгебраической формы комплексного числа к тригонометрической достаточно определить главное значение аргумента комплексного числа z , то есть считать φ= arg z . Знаки полученных значений cos φ и sin φ по формулам (7.5), дают возможность определить, какой координатной четверти принадлежит угол φ.

Используя формулу Эйлера

комплексное число можно записать в так назы­ваемой показательной (или экспоненциальной) форме

где r =| z | — модуль комплексного числа, а угол ( k =0;1;1;2;2…).

Функция e i φ – периодическая с основным пери­одом 2 π, поэтому для записи комплексного числа в показательной форме по формуле 7.7 достаточно найти главное значение его аргумента, то есть считать φ = arg z .

Пример 7.1. Записать комплексные числа в тригонометрической и показательной формах.

Решение. Для z 1 имеем . Поэтому .

Для действительного числа . Поэтому

На множестве комплексны х чисел определен ряд операций.

Из равенства (7.9) следует, что геометрически комплексные числа вычитаются как векторы. При этом число z = z 1 z 2 изображается вектором, соединяющим концы векторов , и исходящим из конца вычитаемого в конец уменьшаемого (см. рис. 7.2). Таким образом, модуль разности двух комплексных чисел равен расстоянию d между точками, изображающими эти числа на плоскости:

Из (7.11) следует важнейшее соотношение i 2 = 1. Действительно,

Найдем произведение комплексных чисел и . Производя все необходимые выкладки согласно формуле (7.11), получим формулу произведения комплексных чисел, заданных в тригонометрической форме :

Видно, что при умножении комплексных чисел в тригонометрической форме их модули перемножаются, а аргументы складываются. Это правило распространяется на любое конечное число множителей. Нетрудно видеть, что если есть n множителей и все они одинаковые, то частным случаем равенства (7.12) является формула возведения комплексного числа в натуральную степень:

(7.13) называется первой формулой Муавра.

Произведение двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:

4. Частным двух комплексных чисел z 1 и называется комплексное число z , которое, будучи умноженным на z 2, дает число z 1, то есть , если .

Пусть , тогда с использованием этого определения получаем:

На практике при нахождении частного двух комплексных чисел удобно умножить числитель и знаменатель дроби на число, сопряженное знаменателю, с дальнейшим применением равенства i 2 = 1 и формулы разности квадратов.

Деление комплексных чисел осуществляется также и в тригонометрической форме, при этом имеет место формула:

Видно, что при делении комплексных чисел их модули делятся, а аргументы вычитаются соответственно.

Частное двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:

Пример 7.2. Найти сумму, разность, произведение и частное комплексных чисел .

Решение. По формуле (7.8) сумма заданных чисел равна .

Согласно формуле (7.9) разность заданных чисел равна .

Пользуясь формулой (7.11), вычислим их произведение

На основании формулы (7.14) вычислим их частное

Пример 7.3. Найти произведение и частное комплексных чисел , представив их в тригонометрической и показательной форме.

Решение. Используя (7.4) и (7.5), получаем:

Аналогично, для z 2 можно записать:

По формулам (7.12) и (7.16) получим в тригонометрической форме:

Пользуясь формулами (7.14) и (7.17), получим в показательной форме:

5. Извлечение корня n -ой степени – операция, обратная возведению

в натуральную степень, определенному ранее формулой (7.13).

Корнем n -ой степени из комплексного числа z называется комплексное число ω, удовлетворяющее равенству ω n = z , то есть , если ω n = z .

Пусть , тогда по данному определению и формуле (7.13) Муавра можно записать: . Сравнивания части этого равенства, получим: . Отсюда (корень арифметический). Окончательно получаем:

(7.18) называется второй формулой Муавра.

Видно, что для любого корень n -ой степени из комплексного числа z имеет равно n различных значений.

Пример 7.4. Найти все корни уравнения z 4 +16=0.

Решение. Запишем уравнение в виде z 4 =–16+0∙ i . Отсюда по формуле (7.18) получим:

Сформулируем несколько иначе основную теорему алгебры 3.2 над полем комплексных чисел .

Теорема 7.1 (основная теорема алгебры). Для всякого многочлена с комплексными коэффициентами

Приведем еще одну теорему, имеющую место над множеством комплексных чисел.

Теорема 7.2. Если многочлен Pn ( x ) с действительными коэффициентами имеет комплексный корень a + ib , то он имеет и сопряженный корень a ib

В разложение многочлена комплексные корни входят сопряженными парами. Пусть корни многочлена x 1 = a + ib и x 2 = a – ib . Перемножив линейные множители разложения , получим трехчлен второй степени с действительными коэффициентами x 2 + px + q и отрицательным дискриминантом. Действительно,

Таким образом, произведение линейных множителей, соответствующих сопряженным корням, можно заменить квадратным трехчленом с действительными коэффициентами, а соответствующее квадратное уравнение будет иметь отрицательный дискриминант.


источники:

http://programforyou.ru/calculators/complex-calculator

http://www.sites.google.com/site/vyssaamatem/glava-vii-kompleksnye-cisla/vii-1-formy-zapisi-kompleksnyh-cisel-i-dejstvia-nad-nimi