Задача численные методы алгебраическое уравнение

Численные методы решения алгебраических и трансцендентных уравнений в среде Microsoft Excel

Цель урока: Совершенствование умений и навыков по теме «Решение алгебраических и трансцендентных уравнений», применяя возможности MS Excel по решению алгебраических и трансцендентных уравнений. Отработать практическое освоение соответствующих умений и навыков.

Задачи урока:

  • Образовательные – совершенствование умений студентов при решении алгебраических и трансцендентных уравнений в среде электронных таблиц MS Excel. Выработать умение применять теоретические знания в практических расчетах;
  • Развивающие – познакомить студентов с применением компьютеров в качестве помощников при решении уравнений. Развивать у студентов математическую речь: создать ситуацию для применения основных понятий в речи; абстрактное мышление: создать ситуацию предъявления материала от общего к частному и от частного к общему, стимулировать самостоятельное обобщение материала сильными студентами;творческого мышления через создание условий для самореализации творческого потенциала обучающихся;
  • Воспитательные – выработать у студентов умение рационально использовать время и возможности компьютерных технологий при решении задач. Воспитывать интерес к предмету через ситуацию успеха и взаимодоверия;ответственность перед самим собой.

Тип урока: комбинированный урок.

Вид урока: практическое занятие, продолжительность – 2 часа.

Оборудование урока:

  • Компьютеры с OS MS Windows;
  • Программа Microsoft Excel;
  • Презентация по теме, выполненная в программе PowerPoint;
  • Карточки с заданиями для самостоятельной работы.

Структура урока:

1.1. Мобилизующее начало, постановка целей и задач на урок;

1.2.Фронтальный опрос с целью выявления основных этапов решения задач с использованием ЭВМ;

1.3. Постановка задачи с целью повторения алгоритма решения уравнения f(x)=0 на отрезке [а;в] различными методами;

1.4.Подведение итогов 1 этапа урока.

2.Применение знаний, формирование умений и навыков:

2.1.Беседа с целью формулировки задания для самостоятельной работы и инструктажа по ее организации;

2.2.Самостоятельная работа в группах по выполнению задания различными методами решения алгебраических и трансцендентных уравнений в среде Microsoft Excel.

2.3.Подведение итога урока.

В данном уроке особое внимание уделено визуальному представлению информации – в ходе урока с помощью проектора демонстрируются слайды, подготовленные в пакете презентационной графики Microsoft PowerPoint.

ХОД УРОКА

1. Актуализация знаний

Мобилизующее начало, постановка целей и задач на урок.

На прошлых уроках мы с вами рассмотрели алгебраические и трансцендентные уравнения, выделили методы их решения и решали данные уравнения ручным счетом. А на сегодняшнем занятии мы будем совершенствовать умения и навыки при решении алгебраических и трансцендентных уравнений в среде Microsoft Excel.

Поэтому нам необходимо вспомнить и повторить знания, которые потребуются на этом уроке. В чем заключается процесс решения задачи с использованием ЭВМ?

В общем случае процесс решения задачи с использованием ЭВМ состоит из следующих этапов:

  • 1.Постановка задачи и построение математической модели (этап моделирования);
  • 2.Выбор метода и разработка алгоритма (этап алгоритмизации);
  • 3.Запись алгоритма на языке, понятном ЭВМ (этап программирования);
  • 4.Отладка и использования программы на ЭВМ (этап реализации);
  • 5.Анализ полученных результатов (этап интерпретации).

— В чем заключается постановка задачи?

— Постановка задачи: Пусть дано уравнение f(x) = 0, (a, b) — интервал, на котором f(x) имеет единственный корень. Нужно приближенно вычислить этот корень с заданной точностью.

— В чем заключается общая постановка задачи?

— Общая постановка задачи. Найти действительные корни уравнения f(x) =0, где f(x) – алгебраическая или трансцендентная функция.

— Точные методы решения уравнений подходят только к узкому классу уравнений (квадратные, биквадратные, некоторые тригонометрические, показательные, логарифмические)

— В чем заключается задача численного нахождения корней уравнения?

— Задача численного нахождения корней уравнения состоит из двух этапов:

1. Отделение (локализация) корня;

2. Приближенное вычисление корня до заданной точности(уточнение корней)

— Какая задача называется уточнения корня?

-Уточнение корня. Если искомый корень уравнения f(x)=0, отделен, т.е. определен отрезок [a,b], на котором существует только один действительный корень уравнения, то далее необходимо найти приближенное значение коня с заданной точностью.

— Какими методами можно производить уточнения корня?

— Уточнения корня можно производить различными методами:

1) Метод половинного деления (бисекции);

2) Метод итераций;

3) Метод хорд (секущих);

4) Метод касательных (Ньютона);

5) Комбинированные методы.

— Объясните алгоритм решения уравнения f(x)=0 на отрезке [а;в] различными методами.

Применение знаний, формирование умений и навыков:

Практическое задание «Решение алгебраических и трансцендентных уравнений в среде Microsoft Excel»

  • Ознакомиться с теоретической частью задания;
  • Провести расчет для своего варианта индивидуального задания в Microsoft Excel
  • Оформить презентацию в Ms PowerPoint, включающую:
    • постановку задачи;
    • алгоритм расчета;
    • таблицу с расчетом из Ms Excel, график исходной функции;
    • результат расчета и его анализ.

Индивидуальное расчетное задание

Дано: x 3 + 8x + 10 = 0

Найти: Отделить корень заданного уравнения, пользуясь графическим методом, и по методам вычислите один корень с точностью 0,001 при помощи программы на ПК

Графический метод: Для отделения корней уравнения естественно применять графический метод. График функции у = f (х) с учетом свойств функции дает много информации для определения числа корней уравнения f (х) = 0.

До настоящего времени графический метод предлага­лось применять для нахождения грубого значения корня или интервала, содержащего корень, затем применять итерационные методы, т.е. методы последовательных приближений для уточнения значения корня. С появлением математических пакетов и электронных таблиц стало возможным вычислять таблицы значений функции с любым шагом и строить графики с высокой точностью.

Это позволяет уточнять очередной знак в приближенном значении корня при помощи следующего алгоритма:

  • если функция f(x) на концах отрезка [а,b] значения разных принимает значения разных знаков то делим отрезок на 10 равных частей и находим ту часть, которая содержит корень (таким способом мы можем уменьшить длину отрезка, содержащего корень, в 10 раз);
  • повторим действия предыдущего пункта для полученного отрезка.

Этот процесс можно продолжать до тех пор, пока длина отрезка не станет меньше заданной погрешности.

Задания для студентов первой группы

  • Найдите приближенное значение уравнения заданного функцией x 3 + 8x + 10 = 0, с точностью е=0,001
  • Представьте графически поставленную задачу в среде Microsoft Excel;

Метод половинного деления:Постановка задачи: Пусть дано уравнение f(x) = 0, (a, b) — интервал, на котором f(x) имеет единственный корень. Нужно приближенно вычислить этот корень с заданной точностью.

Примечание: Заметим, что если f(x) имеет k корней, то нужно выделить соответственно k интервалов.

Метод половинного деления или дихотомии (дихотомия — сопоставленность или противопоставленность двух частей целого). Метод основан на той идее, что корень лежит либо на середине интервала (a, b), либо справа от середины, либо — слева, что следует из существования единственного корня на интервале (a, b).

Алгоритм для программной реализации:

  1. а:=левая граница b:= правая граница
  2. m:= (a+b)/2 середина
  3. определяем f(a) и f(m)
  4. если f(a)*f(m) e повторяем, начиная с пункта 2
  5. m — искомый корень.

Задания для студентов второй группы

  1. Найдите приближенное значение уравнения заданного функцией x 3 + 8x + 10 = 0, с точностью е=0,001.
  2. Расчет уравнения по методу половинного деления в среде Microsoft Excel.

Метод простой итерации: Смысл метода простой итерации состоит в том, что мы представляем уравнение f(x) в виде ) и по формуле будем строить итерации, которые сходятся к искомому корню с интересующей степенью точности, но тут есть проблемы: возможно f(x) очень сложно представить в таком виде, да и не факт, что любая будет строить сходящиеся итерации, поэтому алгорим сводится к тому, чтобы оптимально найти .

Подготовка:

1. Ищем числа m и M такие, что на (a, b);

2. Представляем , где ;

Алгоритм:

1. Выбираем х0 из (a, b);

2. Вычисляем ;
3. Проверяем условие , где q=(M-m)/(M+m);

4. Если оно ложно, то переходим к пункту 7;

6. Переходим к пункту 2;

7. х1 – искомый корень.

Задания для студентов третьей группы

  1. Найдите приближенное значение уравнения заданного функцией x 3 + 8x + 10 = 0, с точностью е=0,001
  2. Расчет уравнения по методу простой итерации в среде Microsoft Excel.

Метод хорд: Метод хорд заключается в замене кривой у = f(x) отрезком прямой, проходящей через точки (а, f(a)) и (b, f(b)). Абсцисса точки пересечения прямой с осью ОХ принимается за очередное приближение.

Чтобы получить расчетную формулу метода хорд, за­пишем уравнение прямой, проходящей через точки (a, f(a)) и (b, f(b)) и, приравнивая у к нулю, найдем х:

,

Алгоритм метода хорд:

2) Вычислим следующий номер итерации: k = k + 1.

Найдем очередное k-e приближение по формуле: xk = a — f(a)(b — a)/(f(b) — f(a)). Вычислим f(xk);

3) Если f(xk)= 0 (корень найден), то переходим к п. 5.

4) Если |xk – xk–1| > ε, то переходим к п. 2;

5) Выводим значение корня xk;

Задания для студентов четвертой группы

  1. Найдите приближенное значение уравнения заданного функцией x 3 + 8x + 10 = 0, с точностью е=0,001.
  2. Расчет уравнения по методу хорд в среде Microsoft Excel.
  3. Метод касательных: В точке пересечения касательной с осью Оx переменная у = 0. Приравнивая у к нулю, выразим х и получим формулу метода касательных:

Теорема. Пусть на отрезке [а, b]выполняются условия:

1) функция f(x)и ее производные f'(х)и f»(x) непрерывны;

2) производные f'(x) и f»(x)отличны от нуля и сохраняют определенные постоянные знаки;

3) f(a)× f(b) 0, то итерационная последовательность сходится монотонно

Задания для студентов пятой группы

  1. Найдите приближенное значение уравнения заданного функцией x 3 + 8x + 10 = 0, с точностью е=0,001.
  2. Расчет уравнения по методу касательных в среде Microsoft Excel.

Студенты выполняют задания в группах и показывают полученное решение у доски (один представитель от группы), делают выводы о проделанной работе.

В данном уроке мы познакомились с решением алгебраических и трансцендентных уравнений в среде Microsoft Excel.

Уточнения корня производилось различными методами:

1) методом бисекции;

2) методом итераций;

3) методом секущих;

4) методом Ньютона;

1. Самый простейший из методов уточнения корня является метод половинного деления и используется во многих стандартных программных средствах.

2. Метод хорд в отличие от метода дихотомии, обращающего внимание лишь на знаки значений функции, но не на сами значения. Он требует , чтобы один конец отрезка, на котором ищется корень был не подвижен. Берется один из концов отрезка. Метод является двухточечным, его сходимость монотонная и односторонняя. Метод хорд использует пропорциональное деление интервала.

3. В методе касательных в отличие от методов дихотомии и хорд задается не начальный интервал местонахождения корня, а его начальное приближение .

4. У метода хорд и у метода Ньютона имеется общий недостаток: на каждом шаге проверяется точность значения.

Численные методы решения СЛАУ

Постановка задачи

Прикладные задачи, характерные для проектирования современных объектов новой техники, часто сводятся к многомерным в общем случае нелинейным уравнениям, которые решаются методом линеаризации, т.е. сведением нелинейных уравнений к линейным. В общем случае система [math]n[/math] уравнений с [math]n[/math] неизвестными записывается в виде

где [math]f_1,f_2,\ldots,f_n[/math] — функции [math]n[/math] переменных, нелинейные или линейные ( [math]x_i[/math] в функции [math]f_i[/math] входят в первых или частично в нулевых степенях). Здесь рассматривается частный случай задачи (1.1) — линейная неоднородная задача для систем линейных алгебраических уравнений (СЛАУ), которая сокращенно записывается в виде

где [math]A=(a_\in \mathbb^[/math] — действительная матрица размера [math](n\times n),

i,\,j[/math] — переменные, соответствующие номерам строк и столбцов (целые числа); [math]b=(b_1,\ldots,b_n)^T\in \mathbb^n[/math] — вектор-столбец размера [math](n\times1),

x=(x_1,\ldots,x_n)^T\in \mathbb^n[/math] — вектор-столбец неизвестных, [math]\mathbb^n[/math] — n-мерное евклидово пространство, верхний индекс [math]T[/math] здесь и далее обозначает операцию транспонирования. Требуется найти решение [math]x_<\ast>= (x_<\ast1>,\ldots, x_<\ast n>)^T\in \mathbb^n[/math] системы (1.2), подстановка которого в (1.2) приводит к верному равенству [math]Ax_<\ast>=b[/math] .

1. Из линейной алгебры известно, что решение задачи (1.2) существует и единственно, если детерминант матрицы [math]A[/math] отличен от нуля, т.е. [math]\det A \equiv |A|\ne0[/math] ( [math]A[/math] — невырожденная матрица, называемая также неособенной).

2. Поставленная задача часто именуется первой задачей линейной алгебры. Подчеркнем, что в ней входными (исходными) данными являются матрица [math]A[/math] и вектор [math]b[/math] , а выходными — вектор [math]x[/math] .

3. Задача (1.2) имеет следующие особенности:

а) задача линейная (все переменные [math]x_[/math] , входящие в систему, имеют степени не выше первой) и неоднородная [math](b\ne0)[/math] ;

б) количество уравнений равно количеству неизвестных (система замкнута);

в) количество уравнений для некоторых практических задач велико: k\cdot10^3

г) при больших [math]n[/math] использовать формулу [math]x=A^<-1>b[/math] не рекомендуется в силу трудностей нахождения обратной матрицы.

4. Важнейшим признаком любой математической задачи, который надо в первую очередь принимать во внимание при ее анализе и выборе метода решения, является ее линейность или нелинейность. Это связано с тем, что нелинейные задачи с вычислительной точки зрения являются наиболее трудными. Так, нелинейная задача (1.1) является достаточно сложной при числе уравнений [math]n[/math] , пропорциональном [math]10^2[/math] , а линейная задача — при [math]n[/math] , пропорциональном [math]10^6[/math] .

Число обусловленности

Характер задачи и точность получаемого решения в большой степени зависят от ее обусловленности, являющейся важнейшим математическим понятием, влияющим на выбор метода ее решения. Поясним это понятие на примере двумерной задачи: [math]\begina_<11>x_1+ a_<12>x_2=b_1,\\ a_<21>x_1+ a_<22>x_2=b_2.\end[/math] . Точным решением этой задачи является вектор [math]x_<\ast>= (x_<\ast1>, x_<\ast2>)^T[/math] , компоненты которого определяются координатами точки пересечения двух прямых, соответствующих уравнениям [math]a_<11>x_1+ a_<12>x_2=b_1,[/math] [math]a_<21>x_1+ a_<22>x_2=b_2[/math] (рис. 1.1,а).

На рис. 1.1,б применительно к трем наборам входных данных, заданных с некоторыми погрешностями и соответствующих различным системам линейных уравнений, иллюстрируется характер обусловленности системы. Если [math]\det A[/math] существенно отличен от нуля, то точка пересечения пунктирных прямых, смещенных относительно сплошных прямых из-за погрешностей задания [math]A[/math] и [math]b[/math] , сдвигается несильно. Это свидетельствует о хорошей обусловленности системы. При [math]\det A\approx0[/math] небольшие погрешности в коэффициентах могут привести к большим погрешностям в решении (плохо обусловленная задача), поскольку прямые близки к параллельным. При [math]\det A=0[/math] прямые параллельны или они совпадают, и тогда решение задачи не существует или оно не единственно.

Более строго обусловленность задачи характеризуется числом обусловленности [math]\nu(A)= \|A\|\cdot \|A^<-1>\|[/math] , где [math]\|A\|[/math] — норма матрицы [math]A[/math] , а [math]\|A^<-1>\|[/math] — норма обратной матрицы. Чем больше это число, тем хуже обусловленность системы (при [math]\nu(A)\approx 10^3\div 10^4[/math] система линейных алгебраических уравнений плохо обусловлена). В качестве нормы матрицы может быть принято число, являющееся максимальным из сумм (по модулю) элементов всех строк этой матрицы. Подчеркнем, что реализация хорошей или плохой обусловленности в корректной и некорректной задачах напрямую связана с вытекающей отсюда численной устойчивостью или неустойчивостью. При этом для решения некорректных задач обычно применяются специальные методы или математические преобразования этих задач к корректным.

В численном анализе используются два класса численных методов решения систем линейных алгебраических уравнений:

1. Прямые методы , позволяющие найти решение за определенное число операций. К прямым методам относятся: метод Гаусса и его модификации (в том числе метод прогонки), метод [math]LU[/math] — разложения и др.

2. Итерационные методы , основанные на использовании повторяющегося (циклического) процесса и позволяющие получить решение в результате последовательных приближений. Операции, входящие в повторяющийся процесс, составляют итерацию. К итерационным методам относятся: метод простых итераций, метод Зейделя и др.

Численные схемы реализации метода Гаусса

Рассмотрим частный случай решения СЛАУ — задачу нахождения решения системы линейных алгебраических уравнений

b=\beginb_1\\\vdots\\b_n\end[/math] столбцы размеров [math]n\times 1[/math] . Это означает, что число уравнений совпадает с числом неизвестных, т.е. [math]m=n[/math] . Предполагается, что выполняется условие [math]\det\equiv|A|\ne0[/math] . Тогда по теореме 5.1 решение системы (10.1) существует и единственно.

Согласно изложенному ранее, метод Гаусса содержит две совокупности операций, которые условно названы прямым ходом и обратным ходом.

Прямой ход состоит в исключении элементов, расположенных ниже элементов, соответствующих главной диагонали матрицы [math]A[/math] . При этом матрица [math]A[/math] с помощью элементарных преобразований преобразуется к верхней треугольной, а расширенная матрица [math](A\mid b)[/math] — к трапециевидной:

Заметим, что в отличие от общего подхода здесь не требуется приводить расширенную матрицу к упрощенному виду. Считается, что для реализации эффективных численных процедур достаточно свести проблему к решению системы с треугольной матрицей коэффициентов.

Обратный ход состоит в решении системы [math]\widetildex= \widetilde[/math] .

Алгоритм численного метода Гаусса

а) Положить номер шага [math]k=1[/math] . Переобозначить все элементы расширенной матрицы [math](A\mid b)[/math] через [math]a_^<(0)>,[/math] [math]i=1,\ldots,n;[/math] [math]j=1,\ldots,n+1[/math] ;

б) Выбрать ведущий элемент одним из двух способов.

Первый способ (схема единственного деления). Выбрать в качестве ведущего элемента [math]a_^<(k-1)>\ne0[/math] .

Второй способ (схема с выбором ведущего элемента). На k-м шаге сначала переставить [math](n-k+1)[/math] оставшихся уравнений так, чтобы наибольший по модулю коэффициент при переменной [math]x_k[/math] попал на главную диагональ, а затем выбрать в качестве ведущего элемента [math]a_^<(k-1)>[/math] .

в) каждый элемент строки, в которой находится ведущий элемент, поделить на него:

г) элементы строк, находящихся ниже строки с ведущим элементом, подсчитать по правилу прямоугольника, схематически показанного на рис. 10.1 (исключить элементы, стоящие ниже ведущего элемента).

Поясним алгоритм исключения на рис. 10.1. Пусть рассчитывается значение [math]a_^<(k)>[/math] на k-м шаге. Следует соединить элемент [math]a_^<(k-1)>[/math] с ведущим элементом [math]a_^<(k-1)>[/math] . Получена одна из диагоналей прямоугольника. Вторую диагональ образует соединение элементов [math]a_^<(k-1)>[/math] и [math]a_^<(k-1)>[/math] . Для нахождения значения [math]a_^<(k)>[/math] из его текущего значения [math]a_^<(k-1)>[/math] вычитается произведение элементов [math]a_^<(k-1)>[/math] и [math]a_^<(k-1)>[/math] , деленное на ведущий элемент;

д) если [math]k\ne n[/math] , то перейти к пункту «б», где вместо [math]k[/math] положить [math]k+1[/math] .

Если [math]k=n[/math] , завершить прямой ход. Получена расширенная трапециевидная матрица из элементов [math]a_^<(n)>[/math] , соответствующая [math]\bigl(\widetilde\mid \widetilde\bigr)[/math] .

1. Схема единственного деления имеет ограничение, связанное с тем, что ведущие элементы должны быть отличны от нуля. Одновременно желательно, чтобы они не были малыми по модулю, поскольку тогда погрешности при соответствующем делении будут большими. С этой точки зрения схема с выбором ведущего элемента является более предпочтительной.

2. По окончании прямого хода может быть вычислен определитель матрицы [math]A[/math] путем перемножения ведущих элементов.

3. В расчетных формулах все элементы расширенной матрицы обозначаются одним символом [math]a[/math] , так как они преобразуются по единым правилам.

4. Понятие нормы квадратной невырожденной матрицы позволяет исследовать влияние малых изменений правой части и элементов матрицы на решение систем линейных уравнений. Положительное число [math]A=\|A\|\cdot\|A^<-1>\|[/math] называется числом обусловленности матрицы . Существует и более общее определение числа обусловленности, применимое к вырожденным матрицам: [math]\operatornameA= \sup_\frac<\|Ax\|><\|x\|>: \inf_\frac<\|Ay\|><\|y\|>[/math] . Чем больше число обусловленности, тем сильнее ошибка в исходных данных сказывается на решении линейной системы. Если число [math]\operatornameA[/math] велико, система считается плохо обусловленной, т.е. решение системы может существенно изменяться даже при малых изменениях элементов матрицы [math]A[/math] и столбца свободных членов [math]b[/math] .

Пример 10.3. Найти число обусловленности матрицы системы [math]\beginx_1+10x_2=b_1,\\ 100x_1+1001x_2=1101. \end[/math] Решить систему при [math]b_1=11[/math] и [math]b_1=11,\!01[/math] , сравнить близость полученных решений.

По формуле (4.2) для матрицы [math]A=\begin 1&10\\ 100&1001 \end[/math] получаем [math]A^<-1>=\begin 1001&-10\\ -1000&1 \end[/math] . Тогда

В результате [math]\operatornameA= \|A\|\cdot\|A^<-1>\|=1101\cdot1011= 1’113’111[/math] . Очевидно, число обусловленности матрицы системы достаточно велико, поэтому система является плохо обусловленной.

При [math]b_1=11[/math] система имеет единственное решение [math]x_1=1,

x_2=1[/math] , а при [math]b_1=11,\!01[/math] , единственное решение [math]x_1=11,\!01,

x_2=0[/math] . Несмотря на малое различие в исходных данных: [math]\Delta b_1=|11-11,\!01|=0,\!01[/math] , полученные решения отличаются существенно: [math]\Delta x=\left\| \begin1\\1 \end— \begin 11,\!01\\0 \end \right\|_1=10,\!01[/math] , т.е. погрешность [math]\Delta x[/math] решения в 1001 раз больше погрешности [math]\Delta b_1[/math] правой части системы.

Таким образом, решение плохо обусловленной системы может существенно изменяться даже при малых изменениях исходных данных.

Пример 10.4. Решить систему линейных алгебраических уравнений методом Гаусса (схема единственного деления)

1. Прямой ход. Запишем расширенную матрицу и реализуем прямой ход с помощью описанных преобразований:

Согласно пункту 2 замечаний 10.2 определитель матрицы системы равен произведению ведущих элементов: [math]\det=2\cdot\frac<1><2>\cdot26=26[/math] .

Решая эту систему, начиная с последнего уравнения, находим: [math]x_3=3,

Пример 10.5. Методом Гаусса с выбором ведущего элемента по столбцам решить систему:

1. Прямой ход. Реализуем поиск ведущего элемента по правилу: на k-м шаге переставляются [math](n-k+1)[/math] оставшихся уравнений так, чтобы наибольший по модулю коэффициент при [math]x_k[/math] попал на главную диагональ:

Согласно пункту 2 замечаний 10.2 определитель матрицы системы равен произведению ведущих элементов:

Решая ее, последовательно получаем: [math]x_3=1,

Пример 10.6. Решить систему уравнений методом Гаусса единственного деления

В результате получено решение: [math]x_<\ast>= \begin 1&-1&0&1\end^T[/math] .

Метод прогонки для решения СЛАУ

Метод применяется в случае, когда матрица [math]A[/math] — трехдиагональная. Сформулируем общую постановку задачи.

Дана система линейных алгебраических уравнений с трехдиагональной матрицей [math]A[/math] . Развернутая запись этой системы имеет вид

которому соответствует расширенная матрица

Здесь первое и последнее уравнения, содержащие по два слагаемых, знак минус (–) при коэффициенте [math]\beta_i[/math] взят для более удобного представления расчетных формул метода.

Если к (10.2) применить алгоритм прямого хода метода Гаусса, то вместо исходной расширенной матрицы получится трапециевидная:

Учитывая, что последний столбец в этой матрице соответствует правой части, и переходя к системе, включающей неизвестные, получаем рекуррентную формулу:

Соотношение (10.3) есть формула для обратного хода, а формулы для коэффициентов [math]P_i,\,Q_i[/math] которые называются прогоночными , определяются из (10.2), (10.3). Запишем (10.3) для индекса [math]i-1\colon[/math] [math]x_=P_x_i+Q_[/math] и подставим в (10.2). Получим

Приводя эту формулу к виду (10.3) и сравнивая, получаем рекуррентные соотношения для [math]P_i,\,Q_i\colon[/math]

Определение прогоночных коэффициентов по формулам (10.4) соответствует прямому ходу метода прогонки.

Обратный ход метода прогонки начинается с вычисления [math]x_n[/math] . Для этого используется последнее уравнение, коэффициенты которого определены в прямом ходе, и последнее уравнение исходной системы:

Тогда определяется [math]x_n:[/math]

Остальные значения неизвестных находятся по рекуррентной формуле (10.3).

Алгоритм решения систем уравнений методом прогонки

Q_1=-\frac<\delta_1><\beta_1>[/math] (в (10.4) подставить [math]\alpha_1=0[/math] ).

2. Вычислить прогоночные коэффициенты: [math]P_2,Q_2;\,P_3,Q_3;\,\ldots;\,P_Q_[/math] по формулам (10.4).

2. Значения [math]x_,x_,\ldots,x_1[/math] определить по формуле (10.3):

1. Аналогичный подход используется для решения систем линейных алгебраических уравнений с пятидиагональными матрицами.

2. Алгоритм метода прогонки называется корректным, если для всех [math]i=1,\ldots,n,

\beta_i-\alpha_iP_\ne0[/math] , и устойчивым, если [math]|P_i| .

3. Достаточным условием корректности и устойчивости прогонки является условие преобладания диагональных элементов в матрице [math]A[/math] , в которой [math]\alpha_i\ne0[/math] и [math]\gamma_i\ne0[/math] [math](i=2,3,\ldots,n-1)\colon[/math]

и в (10.6) имеет место строгое неравенство хотя бы при одном [math]i[/math] .

4. Алгоритм метода прогонки является экономичным и требует для своей реализации количество операций, пропорциональное [math]n[/math] .

Пример 10.7. Дана система линейных алгебраических уравнений с трехдиагональной матрицей [math]A

\gamma_4=0)[/math] . Решить эту систему методом прогонки.

Данная система удовлетворяет условию преобладания диагональных элементов (10.3): в первом уравнении 3″>[math]5>3[/math] , во втором уравнении 3+1″>[math]6>3+1[/math] ; в третьем уравнении 1+2″>[math]4>1+2[/math] , в четвертом уравнении 1″>[math]3>1[/math] . Далее выполняем прямой и обратный ход, учитывая, что расширенная матрица имеет вид

1. Прямой ход. Вычислим прогоночные коэффициенты:

Подчеркнем, что [math]\beta_1=-5;

\beta_4=3[/math] , так как в (10.2) во втором слагаемом взят знак «минус»:

Подстановкой решения [math]x_<\ast>=\begin 1&1&1&1 \end^T[/math] в исходную систему убеждаемся, что задача решена верно. Для данного примера [math]\beta_i-\alpha_iP_\ne0,

i=1,2,3,4;[/math] [math]|P_i| , т.е. метод прогонки оказался корректным и устойчивым (см. пункт 3 замечаний 10.3).

Для наглядности представления информации исходные данные и результаты расчетов поместим в табл. 10.1, где в первых четырех колонках содержатся исходные данные, а в последних трех — полученные результаты.

Пример 10.8. Дана система линейных алгебраических уравнений с трехдиагональной матрицей [math]A[/math] , решить систему методом прогонки:

Результаты расчетов в прямом и обратном ходе занесены в табл. 10.2.

В результате получено решение: [math]x_<\ast>=\begin 1&2&3&4 \end^T[/math] . Заметим, что условие преобладания диагональных элементов в данном примере не выполнено, но алгоритм метода прогонки позволил получить точное решение. При этом обратим внимание на небольшой порядок системы и отсутствие погрешностей вычислений.

Пример 10.9. Решить методом прогонки систему уравнений

Расширенная матрица системы имеет вид [math]\begin2&1&0&0\!\!&\vline\!\!&4\\ 2&3&-1&-1\!\!&\vline\!\!&9\\ 0&1&-1&3\!\!&\vline\!\!&12\\ 0&0&1&-1\!\!&\vline\!\!&-4 \end[/math] .

1. Прямой ход. Вычислим прогоночные коэффициенты:

Получено решение системы: [math]x_<\ast>=\begin 1&2&-1&3 \end^T[/math] . Результаты расчетов приведены в табл. 10.3

Метод LU-разложения для решения СЛАУ

Рассмотрим ещё один метод решения задачи (10.1). Метод опирается на возможность представления квадратной матрицы [math]A[/math] системы в виде произведения двух треугольных матриц:

где [math]L[/math] — нижняя, a [math]U[/math] — верхняя треугольные матрицы,

С учётом (10.7) система [math]Ax=b[/math] представляется в форме

Решение системы (10.8) сводится к последовательному решению двух простых систем с треугольными матрицами. В итоге процедура решения состоит из двух этапов.

Прямой ход. Произведение [math]Ux[/math] обозначим через [math]y[/math] . В результате решения системы [math]Ly=b[/math] находится вектор [math]y[/math] .

Обратный ход. В результате решения системы [math]Ux=y[/math] находится решение задачи — столбец [math]x[/math] .

В силу треугольности матриц [math]L[/math] и [math]U[/math] решения обеих систем находятся рекуррентно (как в обратном ходе метода Гаусса).

Из общего вида элемента произведения [math]A=LU[/math] , а также структуры матриц [math]L[/math] и [math]U[/math] следуют формулы для определения элементов этих матриц:

Результат представления матрицы [math]A[/math] в виде произведения двух треугольных матриц (операции факторизации) удобно хранить в одной матрице следующей структуры:

Вычисления на k-м шаге метода LU-разложения удобно производить, пользуясь двумя схемами, изображенными на рис. 10.2.

1. Всякую квадратную матрицу [math]A[/math] , имеющую отличные от нуля угловые миноры

можно представить в виде LU-разложения, причем это разложение будет единственным. Это условие выполняется для матриц с преобладанием диагональных элементов, у которых

2. В результате прямого хода может быть вычислен определитель матрицы [math]A[/math] по свойствам определителя произведения матриц (теорема 2.2) и определителя треугольных матриц:

Алгоритм метода LU-разложение

1. Выполнить операцию факторизации исходной матрицы [math]A[/math] , применяя схемы (рис. 10.2) или формулы (10.9), и получить матрицы [math]L[/math] и [math]U[/math] .

2. Решить систему [math]L\cdot y=b[/math] .

3. Решить систему [math]U\cdot x=b[/math] .

Пример 10.10. Решить систему линейных алгебраических уравнений методом LU-разложения

1. Выполним операцию факторизации:

В результате получены две треугольные матрицы:

Согласно пункту 2 замечаний 10.4, определитель матрицы [math]A[/math] находится в результате перемножения диагональных элементов матрицы [math]L\colon\,\det=2\cdot0,\!5\cdot26=26[/math] .

2. Решим систему [math]L\cdot y=b[/math] :

\begin2y_1=16,\\ 3y_1+0,\!5y_2=10,\\ y_1+2,\!5y_2+26y_3=16. \end[/math] . Отсюда [math]\beginy_1=8,\\ y_2=(10-3\cdot8)\cdot2=-28,\\[4pt] y_3=\dfrac<16-8+70><26>=3.\end[/math]

3. Решим систему [math]U\cdot x=y:[/math]

\beginx_1+0,\!5x_2+2x_3=8,\\ x_2-10x_3=-28,\\ x_3=3.\end[/math] . Отсюда [math]\begin x_3=3,\\ x_2=-28+10\cdot3=2,\\ x_1=8-2\cdot3-0,\!5\cdot2=1. \end[/math]

Пример 10.11. Решить систему линейных алгебраических уравнений методом LU-разложения.

1. Выполним операцию факторизации:

2. Решим систему линейных уравнений [math]L\cdot y=b[/math] :

\begin3y_1=5,\\ -2y_1+y_2/3=0,\\ 2y_1-y_2/3+5y_3=15. \end[/math] . Отсюда [math]\beginy_1=5/3,\\ y_2=10,\\ y_3=3.\end[/math]

3. Решим систему [math]U\cdot x=y[/math] :

\begin x_1-x_2/3=5/3,\\ x_2+3x_3=10,\\ x_3=3;\end \Rightarrow

Пример 10.12. Решить систему линейных алгебраических уравнений методом LU-разложения

1. Выполним процедуру факторизации:

В результате получаем матрицы LU-разложения:

2. Решим систему уравнений [math]L\cdot y=b:[/math]

\begin2y_1=4,\\ 2y_1+2y_2=9,\\ y_2-y_3/3=12,\\ y_3+5y_4=-4,\end\!\!\! \Rightarrow

3. Решим систему уравнений [math]U\cdot x=y:[/math]

Отсюда записываем решение исходной системы уравнений: [math]x_<\ast>= \begin1&2&-1&3\end^T[/math] .

Метод квадратных корней для решения СЛАУ

При решении систем линейных алгебраических уравнений с симметрическими матрицами можно сократить объем вычислений почти вдвое.

Пусть [math]A[/math] — симметрическая квадратная матрица системы [math]Ax=b[/math] порядка [math]n[/math] . Решим задачу ее представления в виде

Находя произведение [math]U^T\cdot U[/math] , составим систему уравнении относительно неизвестных элементов матрицы [math]U:[/math]

Система имеет следующий вид:

Из первой строки системы находим

Из второй строки определяем

Из последней строки имеем [math]\textstyle=\sqrt-\sum\limits_^u_^2>>[/math] .

Таким образом, элементы матрицы [math]U[/math] находятся из соотношений

При осуществлении [math]U^TU[/math] -разложения симметрической матрицы могут возникать ситуации, когда [math]u_=0[/math] при некотором [math]i[/math] или подкоренное выражение отрицательно. Для симметрических положительно определенных матриц разложение выполнимо.

Если матрица [math]A[/math] представима в форме [math]U^TU[/math] , то система [math]Ax=b[/math] имеет вид [math]U^TUx=b[/math] . Решение этой системы сводится к последовательному решению двух систем с треугольными матрицами. В итоге процедура решения состоит их двух этапов.

1. Прямой ход. Произведение [math]Ux[/math] обозначается через [math]y[/math] . В результате решения системы [math]U^Ty=b[/math] находится столбец [math]y[/math] .

2. Обратный ход. В результате решения системы [math]Ux=y[/math] находится решение задачи — столбец [math]x[/math] .

Алгоритм метода квадратных корней

1. Представить матрицу [math]A[/math] в форме [math]A=U^T\cdot U[/math] , используя (10.10).

2. Составить систему уравнений [math]U^T\cdot y=b[/math] и найти [math]y[/math] .

3. Составить систему уравнений [math]U\cdot x=y[/math] и найти [math]x[/math] .

Найти решение системы уравнений методом квадратных корней

Решение. 1. Представим матрицу [math]A[/math] в форме [math]A=U^T\cdot U[/math] , используя (10.10):

при [math]i=1[/math] получаем [math]u_<11>= \sqrt>= \sqrt<2>\,,

при [math]i=2[/math] имеем

Таким образом, получили

2. Решим систему [math]U^T\cdot y=b[/math] :

3. Решим систему [math]U\cdot x=y[/math] :

В результате получили решение исходной системы [math]x_1=1,

Метод простых итераций для решения СЛАУ

Альтернативой прямым методам решения СЛАУ являются итерационные методы, основанные на многократном уточнении [math]x^<(0)>[/math] , заданного приближенного решения системы [math]A\cdot x=b[/math] . Верхним индексом в скобках здесь и далее по тексту обозначается номер итерации (совокупности повторяющихся действий).

Реализация простейшего итерационного метода — метода простых итераций — состоит в выполнении следующих процедур.

1. Исходная задача [math]A\cdot x=b[/math] преобразуется к равносильному виду:

где [math]\alpha[/math] — квадратная матрица порядка [math]n[/math] ; [math]\beta[/math] — столбец. Это преобразование может быть выполнено различными путями, но для обеспечения сходимости итераций (см. процедуру 2) нужно добиться выполнения условия [math]\|\alpha\| .

2. Столбец [math]\beta[/math] принимается в качестве начального приближения [math]x^<(0)>= \beta[/math] и далее многократно выполняются действия по уточнению решения, согласно рекуррентному соотношению

или в развернутом виде

3. Итерации прерываются при выполнении условия (где 0″>[math]\varepsilon>0[/math] — заданная точность, которую необходимо достигнуть при решении задачи)

1. Процесс (10.12) называется параллельным итерированием , так как для вычисления (k+1)-го приближения всех неизвестных учитываются вычисленные ранее их k-е приближения.

2. Начальное приближение [math]x^<(0)>[/math] может выбираться произвольно или из некоторых соображений. При этом может использоваться априорная информация о решении или просто «грубая» прикидка. При выполнении итераций (любых) возникают следующие вопросы:

а) сходится ли процесс (10.12), т.е. имеет ли место [math]x^<(k)>\to x_<\ast>[/math] , при [math]k\to\infty[/math] , где [math]x_<\ast>[/math] — точное решение?

б) если сходимость есть, то какова ее скорость?

в) какова погрешность найденного решения [math]x^<(k+1)>[/math] , т.е. чему равна норма разности [math]\bigl\|x^<(k)>-x_<\ast>\bigr\|[/math] ?

Ответ на вопросы о сходимости дают следующие две теоремы.

Теорема (10.1) о достаточном условии сходимости метода простых итераций. Метод простых итераций, реализующийся в процессе последовательных приближений (10.12), сходится к единственному решению исходной системы [math]Ax=b[/math] при любом начальном приближении [math]x^<(0)>[/math] со скоростью не медленнее геометрической прогрессии, если какая-либо норма матрицы [math]\alpha[/math] меньше единицы, т.е. [math]\|\alpha\|_s .

1. Условие теоремы 10.1, как достаточное, предъявляет завышенные требования к матрице [math]\alpha[/math] , и потому иногда сходимость будет, если даже [math]\|\alpha\|\geqslant1[/math] .

2. Сходящийся процесс обладает свойством «самоисправляемости», т.е. отдельная ошибка в вычислениях не отразится на окончательном результате, так как ошибочное приближение можно рассматривать, как новое начальное.

3. Условия сходимости выполняются, если в матрице [math]A[/math] диагональные элементы преобладают, т.е.

и хотя бы для одного [math]i[/math] неравенство строгое. Другими словами, модули диагональных коэффициентов в каждом уравнении системы больше суммы модулей недиагональных коэффициентов (свободные члены не рассматриваются).

4. Чем меньше величина нормы [math]\|\alpha\|[/math] , тем быстрее сходимость метода.

Теорема (10.2) о необходимом и достаточном условии сходимости метода простых итераций. Для сходимости метода простых итераций (10.12) при любых [math]x^<(0)>[/math] и [math]\beta[/math] необходимо и достаточно, чтобы собственные значения матрицы [math]\alpha[/math] были по модулю меньше единицы, т.е. [math]\bigl|\lambda_i(\alpha)\bigr| .

Замечание 10.7. Хотя теорема 10.2 дает более общие условия сходимости метода простых итераций, чем теорема 10.1, однако ею воспользоваться сложнее, так как нужно предварительно вычислить границы собственных значений матрицы [math]\alpha[/math] или сами собственные значения.

Преобразование системы [math]Ax=b[/math] к виду [math]x=\alpha x+\beta[/math] с матрицей [math]\alpha[/math] , удовлетворяющей условиям сходимости, может быть выполнено несколькими способами. Приведем способы, используемые наиболее часто.

1. Уравнения, входящие в систему [math]Ax=b[/math] , переставляются так, чтобы выполнялось условие (10.14) преобладания диагональных элементов (для той же цели можно использовать другие элементарные преобразования). Затем первое уравнение разрешается относительно [math]x_1[/math] , второе — относительно [math]x_2[/math] и т.д. При этом получается матрица [math]\alpha[/math] с нулевыми диагональными элементами.

Например, система [math]\begin-2,\!8x_1+x_2+4x_3=60,\\ 10x_1-x_2+8x_3=10,\\ -x_1+2x_2-0,\!6x_3=20\end[/math] с помощью перестановки уравнений приводится к виду [math]\begin10x_1-x_2+8x_3=10,\\ -x_1+2x_2-0,\!6x_3=20,\\-2,\!8x_1+x_2+4x_3=60, \end[/math] где

|4|>|-2,\!8|+|1|[/math] , т.е. диагональные элементы преобладают.

Выражая [math]x_1[/math] из первого уравнения, [math]x_2[/math] — из второго, а [math]x_3[/math] — из третьего, получаем систему вида [math]x=\alpha x+\beta:[/math]

Заметим, что [math]\|\alpha\|_1=\max\<0,\!9;\,0,\!8;\,0,\!95 \>=0,\!95 , т.е. условие теоремы 10.1 выполнено.

Проиллюстрируем применение других элементарных преобразований. Так, система [math]\begin4x_1+x_2+9x_3=-7,\\ 3x_1+8x_2-7x_3=-6,\\ x_1+x_2-8x_3=7\end[/math] путем сложения первого и третьего уравнений и вычитания из второго уравнения третьего уравнения преобразуется к виду с преобладанием диагональных элементов: [math]\begin 5x_1+2x_1+x_3=0,\\ 2x_1+7x_2+x_3=-13,\\ x_1+x_2-8x_3=7. \end[/math]

2. Уравнения преобразуются так, чтобы выполнялось условие преобладания диагональных элементов, но при этом коэффициенты [math]\alpha_[/math] не обязательно равнялись нулю.

Например, систему [math]\begin1,\!02x_1-0,\!15x_2=2,\!7,\\ 0,\!8x_1+1,\!05x_2=4 \end[/math] можно записать в форме [math]\beginx_1=-0,\!02x_1+0,\!15x_2+2,\!7,\\ x_2=-0,\!8x_1-0,\!05x_2+4,\end[/math] для которой [math]\|\alpha\|_1= \max\<0,\!17;\,0,\!85\>= 0,\!85 .

i,j=1,\ldots,n[/math] достаточно малы, условие сходимости выполняется.

Алгоритм метода простых итераций

1. Преобразовать систему [math]Ax=b[/math] к виду [math]x=\alpha x+\beta[/math] одним из описанных способов.

2. Задать начальное приближение решения [math]x^<(0)>[/math] произвольно или положить [math]x^<(0)>=\beta[/math] , а также малое положительное число [math]\varepsilon[/math] (точность). Положить [math]k=0[/math] .

3. Вычислить следующее приближение [math]x^<(k+1)>[/math] по формуле [math]x^<(k+1)>= \alpha x^<(k)>+\beta[/math] .

4. Если выполнено условие [math]\bigl\|x^<(k+1)>-x^<(k)>\bigr\| , процесс завершить и в качестве приближенного решения задачи принять [math]x_<\ast>\cong x^<(k+1)>[/math] . Иначе положить [math]k=k+1[/math] и перейти к пункту 3 алгоритма.

Методом простых итераций с точностью [math]\varepsilon=0,\!01[/math] решить систему линейных алгебраических уравнений:

Решение. 1. Так как [math]|2| , то условие (5.41) не выполняется. Переставим уравнения так, чтобы выполнялось условие преобладания диагональных элементов:

|10|>|2|+|2|[/math] . Выразим из первого уравнения [math]x_1[/math] , из второго [math]x_2[/math] , из третьего [math]x_3:[/math]

Заметим, что [math]\|\alpha\|_1= \ma\<0,\!2;\,0,\!3;\,0,\!4 \>=0,\!4 , следовательно, условие сходимости (теорема 10.1) выполнено.

2. Зададим [math]x^<(0>=\beta= \begin 1,\!2\\1,\!3\\1,\!4 \end[/math] . В поставленной задаче [math]\varepsilon= 0,\!01[/math] .

3. Выполним расчеты по формуле (10.12):

до выполнения условия окончания и результаты занесем в табл. 10.4.

4. Расчет закончен, поскольку выполнено условие окончания [math]\bigl\|x^<(k+1)>-x^ <(k)>\bigr\|=0,\!0027 .

Приближенное решение задачи: [math]x_<\ast>\cong \begin0,\!9996& 0,\!9995& 0,\!9993 \end^T[/math] . Очевидно, точное решение: [math]x_<\ast>=\begin 1&1&1 \end^T[/math] .

Приведем результаты расчетов для другого начального приближения [math]x^<(0)>=\begin 1,\!2&0&0 \end^T[/math] и [math]\varepsilon=0,\!001[/math] (табл. 10.5).

Приближенное решение задачи: [math]x_<\ast>\cong \begin 1,\!0001& 1,\!0001& 1,\!0001 \end^T[/math] .

Метод Зейделя для решения СЛАУ

Этот метод является модификацией метода простых итераций и в некоторых случаях приводит к более быстрой сходимости.

Итерации по методу Зейделя отличаются от простых итераций (10.12) тем, что при нахождении i-й компоненты (k+1)-го приближения сразу используются уже найденные компоненты (к +1) -го приближения с меньшими номерами [math]1,2,\ldots,i-1[/math] . При рассмотрении развернутой формы системы итерационный процесс записывается в виде

В каждое последующее уравнение подставляются значения неизвестных, полученных из предыдущих уравнений.

Теорема (10.3) о достаточном условии сходимости метода Зейделя. Если для системы [math]x=\alpha x+\beta[/math] какая-либо норма матрицы [math]\alpha[/math] меньше единицы, т.е. [math]\|\alpha\|_s , то процесс последовательных приближений (10.15) сходится к единственному решению исходной системы [math]Ax=b[/math] при любом начальном приближении [math]x^<(0)>[/math] .

Записывая (10.15) в матричной форме, получаем

где [math]L,\,U[/math] являются разложениями матрицы [math]\alpha:[/math]

Преобразуя (10.16) к виду [math]x=\alpha x+\beta[/math] , получаем матричную форму итерационного процесса метода Зейделя:

Тогда достаточное, а также необходимое и достаточное условия сходимости будут соответственно такими (см. теоремы 10.1 и 10.2):

1. Для обеспечения сходимости метода Зейделя требуется преобразовать систему [math]Ax=b[/math] к виду [math]x=\alpha x+\beta[/math] с преобладанием диагональных элементов в матрице а (см. метод простых итераций).

2. Процесс (10.15) называется последовательным итерированием , так как на каждой итерации полученные из предыдущих уравнений значения подставляются в последующие. Как правило, метод Зейделя обеспечивает лучшую сходимость, чем метод простых итераций (за счет накопления информации, полученной при решении предыдущих уравнений). Метод Зейделя может сходиться, если расходится метод простых итераций, и наоборот.

3. При расчетах на ЭВМ удобнее пользоваться формулой (10.16).

4. Преимуществом метода Зейделя, как и метода простых итераций, является его «самоисправляемость».

5. Метод Зейделя имеет преимущества перед методом простых итераций, так как он всегда сходится для нормальных систем линейных алгебраических уравнений, т.е. таких систем, в которых матрица [math]A[/math] является симметрической и положительно определенной. Систему линейных алгебраических уравнений с невырожденной матрицей [math]A[/math] всегда можно преобразовать к нормальной, если ее умножить слева на матрицу [math]A^T[/math] (матрица [math]A^TA[/math] — симметрическая). Система [math]A^TAx= A^Tb[/math] является нормальной.

Алгоритм метода Зейделя

1. Преобразовать систему [math]Ax=b[/math] к виду [math]x=\alpha x+\beta[/math] одним из описанных способов.

2. Задать начальное приближение решения [math]x^<(0)>[/math] произвольно или положить [math]x^<(0)>=\beta[/math] , а также малое положительное число [math]\varepsilon[/math] (точность). Положить [math]k=0[/math] .

3. Произвести расчеты по формуле (10.15) или (10.16) и найти [math]x^<(k+1)>[/math] .

4. Если выполнено условие окончания [math]\bigl\|x^<(k+1)>-x^<(k)>\bigr\| , процесс завершить и в качестве приближенного решения задачи принять [math]x_<\ast>\cong x^<(k+1)>[/math] . Иначе положить [math]k=k+1[/math] и перейти к пункту 3.

Пример 10.15. Методом Зейделя с точностью [math]\varepsilon=0,\!001[/math] решить систему линейных алгебраических уравнений:

1. Приведем систему [math]Ax=b[/math] к виду [math]x=\alpha x+\beta[/math] (см. пример 10.14):

Так как [math]\|\alpha\|_1=\max\<0,\!2;\,0,\!3;\,0,\!4 \>=0,\!4 , условие сходимости выполняется.

2. Зададим [math]x^<(0)>= \begin 1,\!2&0&0 \end^T[/math] . В поставленной задаче [math]\varepsilon=0,\!001[/math] .

Выполним расчеты по формуле (10.15): [math]\begin x_1^<(k+1)>=-0,\!1\cdot x_2^<(k)>-0,\!1\cdot x_3^<(k)>+1,\!2\,,\\[4pt] x_2^<(k+1)>=-0,\!2\cdot x_1^<(k+1)>-0,\!1\cdot x_3^<(k)>+1,\!3\,,\\[4pt] x_3^<(k+1)>=-0,\!2\cdot x_1^<(k+1)>-0,\!2\cdot x_2^<(k+1)>+1,\!4\,,\end\!\!\!\!\! (k=0,1,\ldots)[/math] и результаты занесем в табл. 10.6.

Очевидно, найденное решение [math]x_<\ast>= \begin 1&1&1 \end^T[/math] является точным.

4. Расчет завершен, поскольку выполнено условие окончания [math]\bigl\|x^<(k+1)>-x^<(k)>\bigr\|= 0,\!0004 .

Пример 10.16. Методом Зейделя с точностью [math]\varepsilon=0,\!005[/math] решить систему линейных алгебраических уравнений:

|5|>|-1|+|-2|[/math] , в данной системе диагональные элементы преобладают. Выразим из первого уравнения [math]x_1[/math] , из второго [math]x_2[/math] , из третьего [math]x_3:[/math]

2. Зададим [math]x^<(0)>= \begin 0&0&0 \end^T[/math] . В поставленной задаче [math]\varepsilon= 0,\!005[/math] .

k=0,1,\ldots[/math] и результаты занесем в табл. 10.7.

Очевидно, найденное решение [math]x_<\ast>= \begin 1&1&1 \end^T[/math] является точным.

4. Расчет завершен, поскольку выполнено условие окончания [math]\bigl\|x^<(k+1)>-x^<(k)>\bigr\|= 0,\!001 .

Численные методы решения в алгебре и геометрии

Современная вычислительная техника требует от пользователей знаний основ вычислительной математики и применения этих знаний к решению различных задач народного хозяйства. Сложные вычислительные задачи, включающие при моделировании различных процессов и явлений можно разбить на ряд элементарных: решение уравнений, установление функциональной зависимости между результатами эксперимента, вычисление интегралов и т.д.. При решении очень многих практических задач математическая модель выражается уравнением. В школьном курсе математики мы рассматривали линейные, квадратные уравнения, уравнения третьей и четвертой степени, при решении этих уравнений получали целые, дробные и рациональные решения.

При подготовке к итоговой аттестации в одном из сборников мне встретилось уравнение х 3 +2х -7=0, которое я не смогла решить, применяя способы рассматриваемые в школьной программе. Преподователь сказал, что такое уравнение имеет приближенные корни.

А как решить уравнение, если корни его выражаются приближенными числами? На этот вопрос мне удалось найти ответ, только после изучения темы «Производная».

Скачать:

ВложениеРазмер
исследовательская работа по алгебре и теории чисел362 КБ

Предварительный просмотр:

Муниципальное образовательное учериждение

Кировская средняя общеобразовательная школа

Исследовательская работа по математике

«Численные методы решения

в алгебре и геометрии.»

Выполнила: ученица 11 класса

МОУ Кировская СОШ

Руководитель: учитель математики

МОУ Кировская СОШ

п. Средний Маныч

I. Историческая справка.

II. Численные методы решения уравнений.

1. Традиционный способ определения корней уравнения.

3. Метод косательной (метод Ньютона).

4. Комбинированный метод хорд и касательных.

5. Метод (метод последовательных приближений).

6. Метод проб (метод половинного деления).

III. Решение задач.

IV. Численные методы в геометрии.

Современная вычислительная техника требует от пользователей знаний основ вычислительной математики и применения этих знаний к решению различных задач народного хозяйства. Сложные вычислительные задачи, включающие при моделировании различных процессов и явлений можно разбить на ряд элементарных: решение уравнений, установление функциональной зависимости между результатами эксперимента, вычисление интегралов и т.д.. При решении очень многих практических задач математическая модель выражается уравнением. В школьном курсе математики мы рассматривали линейные, квадратные уравнения, уравнения третьей и четвертой степени, при решении этих уравнений получали целые, дробные и рациональные решения.

При подготовке к итоговой аттестации в одном из сборников мне встретилось уравнение х 3 +2х -7=0, которое я не смогла решить, применяя способы рассматриваемые в школьной программе. Преподователь сказал, что такое уравнение имеет приближенные корни.

А как решить уравнение, если корни его выражаются приближенными числами? На этот вопрос мне удалось найти ответ, только после изучения темы «Производная».

Цель работы: научиться находить приблизительные корни уравнений n-ной степени и трансцендентных уравнений.

При решении уравнений f(x) = 0 вначале графически находим интервал изоляции, в котором находится корень уравнения. Затем, после такого отделения корней, каждый из них может быть вычислен с любой степенью точности посредством аналитических методов. В работе рассматривается метод хорд, метод касательных (метод Ньютона), метод итераций(метод последовательных приближений) и метод проб (половиного деления).

С помощью описанных методов можно решать задачи практического содержания в различных отраслях народного хозяйства: бухгалтерии, ветеринарии, медицине, промышленности и т.д. – там, где поставленна любая математическая модель задач, сводящаяся к алгебраическим уравнениям.

I. Историческая справка.

Представьте, что в очень легком – практически невесомом – кошельке содержится какое-то количество монет одинакового достоинства. Как узнать, сколько монет в кошельке, не заглядывая внутрь? Есть очень простой способ: положить кошелек на одну чашу рычажных весов и уравновесить его монетками на другой чаше. Сколько монет для этого потребуется – столько же их и в кошельке.

Испытанный измерительный инструмент продавцов, химиков и аптекарей приходит на помощь и в чуть более сложном случае: пусть на левой чаше находящихся в равновесии весов лежат кошелек с неизвестным числом монет и еще 5 монет рядом с ним, а на правой чаше – 15 точно таких же монеток. Для того чтобы узнать, сколько монет в кошельке, снимем по 5 монет с обеих чаш – равновесие при этом не нарушится. Следовательно, внутри кошелька 10 монет.

В те далекие времена, когда мудрецы впервые стали задумываться о равенствах, содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. «Ищется куча, которая вместе с двумя третями ее, половиной и одной седьмой составляет 37. », – поучал во II тысячелетии до новой эры египетский писец Ахмес. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущуства. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

Дошедшие до нас источники свидетельствуют, что древние ученные владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описание этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: «Смотри!», «Делай так!», «Ты правильно нашел». В этом смысле исключением является «Арифметика» греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.

Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово «аль-джебр» из арабского названия этого тракта – «Китаб аль-джебр валь-мукабала» («Книга о восстановлении и противопоставлении») – со временем превратилось в хорошо знакомое всем слово «алгебра», а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

Большой вклад в теорию о решении уравнений внес итальянский ученный Леонардо Пизанский.

Среди современников ему не было равных. И в последующие три столетия нельзя назвать ни одного ученного такого масштаба. Творчество Леонардо Пизанского (1180 – 1240) оказало решающее влияние на развитие алгебры и теории чисел, в частности на исследования таких математиков, как Франсуа Виет и Пьер Ферма.

При дворе Фридриха II устраивались научные диспуты. На одном из них придворный философ магистр Иоганн Палермский предложил Леонардо пизанскому два вопроса, которые в современных обозначениях выглядят так:

1) найти корень уравнения

х 3 + 2х 2 + 10х = 20;

2) найти рациональные решения системы уравнений

х 2 +5= и 2 ,

Леонардо провел тщательные исследования обеих хадач и написал две книги – «Цветок» и «Книга квадратов» (или «Книга о квадратных числах») 1225.), посвященные их решению. Хотя обе работы изданы типографическим способом только в 1862 г., математикам средневековой Европы они были хорошо известны.

В первой книге Леонардо установил, что корень уравнения (1) не является ни целым числом, ни дробью. Он также не может иметь вид n, n + m или n – m. Наконец, Леонардо вычислил его с точностью до шестого шестидесятеричного знака:

х = 1; 22, 7, 42, 33, 4, 40

(здесь точка с запятой отделяют целую часть от дробной, а запятые – шестидесятиричные разряды). Каким способом было полученно это значение, до сих пор остается неизвестным.

Если квадратные уравнения умели решать еще математики Вавилонии и Древней Индии, то решение урувненийпри n > 3 появились немного в конце XV века. А вот применение численных методов при нахождении корней уравнений впервые встречаются в работах Исаака Ньютона.

II. Численные методы решения алгебраических уравнений

Пусть требуется решить алгебраическое уравнение

Методы исследования поведения функции дают возможность находить приближенные значения корней уравнения (1.1).

Если данное уравнение есть алгебраическое уравнение, т.е. f ‘(х) есть многочлен, первой, второй, третьей или четвертой степени, то существуют формулы, позволяющие выразить корни уравнения через его коэффициенты с помощью конечного числа операций сложения, вычитания, умножения, деления и извлечения корней. Для уравнения выше четвертой таких формул, вообще говоря, нет.

Если коэффициенты любого уравнения, алгебраического или неалгебраического (трансцендентного), не буквенные, а числовые, то корни уравнения могут быть вычислены приближенно с любой степенью точности. Отметим, что даже в тех случаях, когда корни алгебраического уравнения выражаются через радикалы, на практике иногда целесообразно применять приближенный метод решения уравнения.

i. 1 .Графический метод, отделение корней

Задача о нахождении приближенных значений действительных корней уравнения (1.1) предусматривает предварительное отделение корня, т.е. установление промежутка, в котором других корней данного уравнения нет.

Будем предполагать, что функция f(х) в промежутке [а; b ] непрерывна со своими производными f'(х) и f «(х), значения f (а) и f (b) функции на концах промежутка имеют разные знаки, т.е. f(а) •f(b) /»(х) сохраняют знак во всем промежутке [а’,b].

Действительные корни уравнения (1.1) являются абсциссами точек пересечения кривой у =f(х) с осью Ох, а если это уравнение преобразуется к виду f 1 (х) = f 2 (х), то его действительные корни будут абсциссами точек пересечения кривых у f,(х) и у = f г (х) (см. рис.).


источники:

http://mathhelpplanet.com/static.php?p=chislennyye-metody-resheniya-slau

http://nsportal.ru/ap/library/nauchno-tekhnicheskoe-tvorchestvo/2014/02/09/chislennye-metody-resheniya-v-algebre-i-geometrii