Задача каноническое уравнение кривой второго порядка

Приведение кривой второго порядка к каноническому виду

Пример . Дано уравнение кривой 3x 2 +10xy+3y 2 -2x-14y-13=0 в системе координат (0,i,j), где i =(1,0) и j =(0,1).
1. Определить тип кривой.
2. Привести уравнение к каноническому виду и построить кривую в исходной системе координат.
3. Найти соответствующие преобразования координат.

Решение. Приводим квадратичную форму B=3x 2 +10xy+3y 2 к главным осям, то есть к каноническому виду. Матрица этой квадратичной формы . Находим собственные числа и собственные векторы этой матрицы:

Характеристическое уравнение:
; λ1=-2, λ2=8. Вид квадратичной формы: .
Исходное уравнение определяет гиперболу.
Заметим, что вид квадратичной формы неоднозначен. Можно записать 8x1 2 -2y1 2 , однако тип кривой остался тот же – гипербола.
Находим главные оси квадратичной формы, то есть собственные векторы матрицы B. .
Собственный вектор, отвечающий числу λ=-2 при x1=1: x 1=(1,-1).
В качестве единичного собственного вектора принимаем вектор , где – длина вектора x 1.
Координаты второго собственного вектора, соответствующего второму собственному числу λ=8, находим из системы
.
x 2=(1,1); .
Итак, имеем новый ортонормированный базис ( i 1, j 1).
По формулам (5) пункта 4.3.3. переходим к новому базису:
или

Задание. Привести к каноническому виду уравнение линии 17x 2 + 12xy + 8y 2 — 20 = 0.
Решение.Пример 2

Задание. Привести к каноническому виду уравнение линии второго порядка, используя теорию квадратичных форм и определить её вид. Уравнение кривой второго порядка путем выделения полного квадрата привести к каноническому виду. Решение

Задание. Привести уравнение к каноническому виду: 16x 2 — 9y 2 -64x — 8y +199 = 0.
Решение.Скачать решение

Задание. Установить, что каждое из следующих уравнений определяет гиперболу, и найти координаты ее центра С, полуоси, эксцентриситет, уравнения асимптот и уравнения директрис. Изобразить гиперболу на чертеже, указав фокусы, асимптоты и директрисы.
Решение:Скачать решение

Задание. Установить, что каждое из следующих уравнений определяет эллипс, и найти координаты его центра С, полуоси, эксцентриситет, уравнения директрис. Изобразить эллипс на чертеже, указав оси симметрии, фокусы и директрисы.
Решение:Скачать решение

Примеры решений: кривые второго порядка

В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости на тему Кривые второго порядка: приведение к каноническому виду, нахождение характеристик, построение графика т.п.

Кривые 2-го порядка: решения онлайн

Задача 1. Привести к каноническому виду уравнение кривой 2 порядка, найти все ее параметры, построить кривую.

Задача 2. Дана кривая. Привести к каноническому виду. Построить и определить вид кривой.

Задача 3. Выяснить вид кривой по общему уравнению, найти её параметры и положение в системе координат. Сделать рисунок.

Задача 4. Общее уравнение кривой второго порядка привести к каноническому. Найти координаты центра, координаты вершин и фокусов. Написать уравнения асимптот и директрис. Построить линии на графики, отметить точки.

Задача 5. Дана кривая $y^2+6x+6y+15=0$.
1. Докажите, что данная кривая – парабола.
2. Найдите координаты ее вершины.
3. Найдите значения ее параметра $р$.
4. Запишите уравнение ее оси симметрии.
5. Постройте данную параболу.

Задача 6. Дана кривая $5x^2+5y^2+6xy-16x-16y=16$.
1. Докажите, что эта кривая – эллипс.
2. Найдите координаты центра его симметрии.
3. Найдите его большую и малую полуоси.
4. Запишите уравнение фокальной оси.
5. Постройте данную кривую.

Задача 7. Найти уравнения параболы и её директрисы, если известно, что парабола имеет вершину в начале координат и симметрична относительно оси $Ox$ и что точка пересечения прямых $y=x$ и $x+y-2=0$ лежит на параболе.

Задача 8. Составить уравнение кривой, для каждой точки которой отношение расстояния до точки $F(0;10)$ к расстоянию до прямой $x=-4$ равно $\sqrt<2/5>$. Привести это уравнение к каноническому виду и определить тип кривой.

Задача 9. Даны уравнения асимптот гиперболы $y=\pm 5x/12$ и координаты точки $M(24,5)$, лежащей на гиперболе. Составить уравнение гиперболы.

Задача 10. Даны уравнение параболы $y=1/4 x^2+1$ и точка $C(0;2)$, которая является центром окружности. Радиус окружности $r=5$.
Требуется найти
1) точки пересечения параболы с окружностью
2) составить уравнение касательной и нормали к параболе в точках её пересечения с окружностью
3) найти острые углы, образуемые кривыми в точках пересечения. Чертёж.

5.2.8. Примеры решения задач по теме «Кривые 2-го порядка»

Определить тип уравнения кривой 2-го порядка:

Если LL2 > 0, то уравнение эллиптического типа;

Если LL2 0, следовательно, перед нами уравнение эллиптического типа.

В уравнении отсутствует произведение Ху, следовательно, квадратичная форма его старших членов имеет канонический вид; поэтому коэффициенты при Х2 и У2 являются собственными числами матрицы квадратичной формы. Итак, L1 = 4, L2 = 9, LL2 > 0, следовательно, перед нами уравнение эллиптического типа.

Геометрические образы, определяемые уравнением эллиптического типа:

— пустое множество («мнимый эллипс»).

Для приведения уравнения к каноническому виду нужно исключить из него слагаемые. Содержащие первые степени переменных. Для этого преобразуем левую часть:

Зададим параллельный перенос осей координат:

Тогда в новых координатах уравнение примет вид:

Каноническое уравнение эллипса.

Ответ: уравнение эллипса, канонический вид .

Привести уравнение к каноническому виду и указать геометрический образ, который оно определяет:

Собственные числа имеют разные знаки, значит, тип уравнения – гиперболический.

Геометрические образы, определяемые уравнением гиперболического типа:

— пара пересекающихся прямых.

Собственные числа имеют разные знаки, значит, тип уравнения – гиперболический.

Геометрические образы, определяемые уравнением гиперболического типа:

— пара пересекающихся прямых.

Заметим, что для данного уравнения нет необходимости искать явный вид преобразования координат, приводящего квадратичную форму к каноническому виду. Это связано с тем, что уравнение не содержит линейных членов, а его свободный член не изменится при преобразовании вида

Найденные собственные числа будут коэффициентами при Х2 и У2 для канонического вида квадратичной формы. Следовательно, в соответствующей координатной системе уравнение примет вид:

Каноническое уравнение гиперболы.

Ответ: уравнение гиперболического типа, канонический вид

.

Привести уравнение к каноническому виду и указать геометрический образ, который оно определяет:

Перед нами полное уравнение 2-го порядка, и для приведения его к каноническому виду потребуется провести оба преобразования координатных осей: поворот на такой угол, чтобы новые оси стали параллельными собственным векторам матрицы квадратичной формы (это преобразование квадратичной формы к каноническому виду), и параллельный перенос.

Перед нами полное уравнение 2-го порядка, и для приведения его к каноническому виду потребуется провести оба преобразования координатных осей: поворот на такой угол, чтобы новые оси стали параллельными собственным векторам матрицы квадратичной формы (это преобразование квадратичной формы к каноническому виду), и параллельный перенос.

Итак, тип уравнения – гиперболический.

Матрица перехода к новому базису:

.

Собственные векторы следует выбирать так, чтобы определитель матрицы перехода равнялся +1 – при этом не нарушается взаимное расположение координатных осей.

Запишем исходное уравнение в новых координатах:

2) Параллельный перенос:

В новых координатах получаем уравнение

Пара пересекающихся прямых.

Ответ: уравнение гиперболического типа, определяет пару пересекающихся прямых, канонический вид: У″ = ± 2Х″.

Не проводя преобразования координат, установить, что уравнение

Определяет прямую, и найти уравнение этой прямой.

Обратите внимание на то, что квадратичная форма, образованная старшими членами уравнения, является полным квадратом.

Иногда привести уравнение к простому виду удается с помощью алгебраических приемов. Представим левую часть уравнения в виде:

Ответ: уравнение определяет прямую Х – 3У + 2 = 0.

Эллипс, симметричный относительно осей координат, проходит через точки

Найти его эксцентриситет.

По условию задачи оси координат являются осями симметрии эллипса, поэтому, во-первых, его уравнение имеет канонический вид, а во-вторых, полуось А равна абсциссе точки А.

По условию задачи оси координат являются осями симметрии эллипса, поэтому, во-первых, его уравнение имеет канонический вид:

А во-вторых, полуось А равна абсциссе точки А, т. е. А = 6. Найдем B, подставив в уравнение эллипса координаты точки М:

Итак, уравнение эллипса:

Тогда расстояние от фокуса до начала координат

Вычислим эксцентриситет эллипса:

Ответ: эксцентриситет

Составить уравнение эллипса, фокусы которого лежат на прямой У + 6 = 0, эксцентриситет равен , а точка М(3; -1) является концом малой полуоси.

Найдите расстояние от точки М до прямой У + 6 = 0, т. е. длину малой полуоси эллипса. Центром симметрии эллипса будет точка О пересечения прямых F1F2 (Y + 6 = 0) и МО, проходящей через точку М перпендикулярно F1F2.

Найдем расстояние от точки М до прямой У + 6 = 0, т. е. длину малой полуоси эллипса. Нормальный вид уравнения данной прямой: – 6 = 0, тогда

Центром симметрии эллипса будет точка О пересечения прямых F1F2 (Y + 6 = 0) и МО, проходящей через точку М перпендикулярно F1F2.

Поскольку прямая F1F2 параллельна оси абсцисс, прямая МО параллельна оси ординат; следовательно, ее уравнение: Х = 3. Тогда координаты точки О:

С учетом расположения осей эллипса можно утверждать, что в системе координат, полученной параллельным переносом начала координат в точку

О(3; -6), то есть заданной преобразованием

Уравнение эллипса имеет канонический вид:

Найдем А из условия, что

Подставим найденные значения А и B в уравнение эллипса:

Ответ: уравнение эллипса: Х2 + 2У2 – 6Х + 24У + 31 = 0.

Составить уравнения директрис гиперболы.

Приведите уравнение гиперболы к каноническому виду и составьте уравнения директрис в виде

Приведем уравнение гиперболы к каноническому виду:

Осями симметрии являются координатные оси, А = 3, B = 4. Тогда

Ответ: уравнения директрис:

Написать уравнение гиперболы, имеющей вершины в фокусах, а фокусы – в вершинах эллипса

Найдите вначале координаты вершин и фокусов эллипса, а затем определите коэффициенты А и B в каноническом уравнении гиперболы.

Координаты вершин гиперболы: (А; 0) и (-А; 0), координаты фокусов: (С; 0) и (–С; 0). Соответственно координаты вершин эллипса: (А1; 0) и (-А1; 0), координаты фокусов: (С1; 0) и (-С1; 0). У данного эллипса А1 = 5,

Тогда для гиперболы А = 4, С = 5, откуда

,

И уравнение гиперболы:

Ответ:

Составить уравнение касательной к гиперболе

В ее точке М=<15; 4>.

Найдите вначале координаты нормали к гиперболе в точке М (если кривая задана уравнением F(X,Y) = 0, То нормаль к ней в точке М0=<Х00>

Имеет координаты: П = (FX(X0;Y0);FY(X0;Y0))), а затем составьте уравнение прямой, проходящей через точку М=<15; 4> перпендикулярно

Найдем координаты нормали к гиперболе в точке М.

Уравнение прямой, проходящей через точку М0(х0;у0) перпендикулярно вектору П = <A, B>, имеет вид:

А(х – х0) + В(у – у0) = 0.

Запишем уравнение касательной:

Ответ: Уравнение касательной:

Составить уравнение параболы, если даны ее фокус F(2; -1) и директриса

Используйте определение параболы: параболой называется геометрическое место точек, для каждой из которых расстояние до фокуса равно расстоянию до директрисы.

Используем определение параболы:

Параболой называется геометрическое место точек, для каждой из которых расстояние до фокуса равно расстоянию до директрисы.

Пусть точка М(Х, У) лежит на параболе. Тогда ее расстояние до фокуса

Выразим через Х и У расстояние от точки М до директрисы.

Нормальное уравнение директрисы:

Из определения параболы DM = MF,

Ответ: уравнение параболы: Х2 + 2Ху + У2 – 6Х + 2У + 9 = 0.

Составить уравнение параболы с вершиной в начале координат, если известно, что парабола симметрична относительно оси Ох и проходит через точку А=<9; 6>. Найти координаты ее фокуса.

Из условий задачи следует, что данная парабола задается каноническим уравнением

Подставьте в это уравнение координаты точки А и найдите значение параметра Р параболы.

Из условий задачи следует, что данная парабола задается каноническим уравнением

Подставим в это уравнение координаты точки А: 36 = 2Р·9, откуда Р = 2.

Следовательно, уравнение параболы имеет вид: У2 = 4Х.

Координаты фокуса параболы задаются формулой: F=<0,5P; 0>, то есть F=<1; 0>.

Ответ: уравнение параболы: У2 = 4Х; фокус F=<1; 0>.


источники:

http://www.matburo.ru/ex_ag.php?p1=agk2

http://matica.org.ua/metodichki-i-knigi-po-matematike/lineinaia-algebra-i-analiticheskaia-geometriia/5-2-8-primery-resheniia-zadach-po-teme-krivye-2-go-poriadka