Задачи метод узловых и контурных уравнений

Метод узловых и контурных уравнений

Данный метод является одним из самых простейших методов расчёта электрических цепей постоянного тока любой сложности. Основывается на составлении уравнений по I и II законам Кирхгофа.

1. Определяем число ветвей m, узлов и контуров в электрической цепи. Число токов в цепи равно числу ветвей. Для каждой ветви выбираем условное направление тока и укажем их на схеме.

2. По первому закону Кирхгофа составляем уравнение для узлов в количестве n-1, где n – число узлов.

3. На основании II закона Кирхгофа составляем m-n+1 уравнений, где m-число ветвей,n-число узлов. Для обхода выбираем контуры с меньшим числом ветвей и содержащих хотя бы одну новую ветвь. Контур обходим по часовой стрелке.

4. Полученные уравнения объединяем в систему и решаем любым способом, известным из математики.

Дано: (рис. 14) Е1=60 В; Е2=48 В; Е3=6 В; R1=200 Ом; R2=100 Ом; R3=9,5 Ом; r03=0,5 Ом; r01=r02 0.

1. Сущность метода. Этот метод основан на применении первого и второго закона Кирхгофа, не требует никаких преобразований схемы и пригоден для расчёта любой цепи; в этом его преимущество.

Сколько же нужно составить уравнений для расчёта цепи? Очевидно, столько, сколько неизвестных величин, в нашем случае – токов. Поэтому начнём решение задачи с определения числа неизвестных токов.

2. Определение числа неизвестных токов и выбор их направлений. Как известно, в каждом неразветвлённом участке цепи (ветви) ток имеет одно и тоже значение от начала до конца участка. В рассматриваемой цепи к узловым точкам А и Б присоединены три ветви: БВГА с током I1, БА с током I2, БДЖА с током I3

Итак, число различных токов равно числу ветвей электрической цепи.

Как определить направления токов?

Нам уже известно, что в сложной цепи до её расчёта узнать направления всех токов нельзя. Поэтому в начале направления токов выбирают произвольно (положительные направления токов) и при выбранных направлениях составляют уравнения. Затем решают эти уравнения и определяют истинные направления токов по их алгебраическим знакам, а именно: токи, действительные направления которых обратны выбранным, выражаются отрицательными числами.

Так, в нашем случае можно заранее сказать, что не все выбранные направления токов (рис. 14, сплошные стрелки) совпадают с действительными, так как не могут все токи притекать к узлу А. Очевидно, что один или два тока выразятся отрицательными числами.

Итак, токи в уравнениях Кирхгофа являются алгебраическими величинами, знаки которых зависят от направлений токов.

3. Составление уравнений по законам Кирхгофа. В нашей задаче – три неизвестных тока I1, I2, I3, для определения которых составим три уравнения.

Начнём с уравнений по первому закону Кирхгофа как более простых. Для цепи с n узлами можно составить n-1 независимое уравнение; для одного (любого) узла цепи уравнение не следует составлять, так как оно было бы следствием предыдущих.

В цепи на рис. 14 два узла, поэтому составим одно уравнение по первому закону Кирхгофа, например для узла А:

Два недостающих уравнения составим по второму закону Кирхгофа, выбрав для этого, например, контуры БАЖДБ и ВГЖДВ (чтобы уравнения были независимы, в каждый следующий контур должна входить одна новая ветвь, не входившая в предыдущий).

Приняв обход каждого контура по направлению движения часовой стрелки и учитывая правила знаков, получим:

;

.

4. Вычисление токов. Подставив в уравнения значения сопротивлений и ЭДС, получим:

Итак, вычисление токов сводится к решению системы трёх уравнений с тремя неизвестными. Для этого, например, определим ток I2 из уравнения и подставим его значение в уравнение:

;

приведя подобные члены, получим:

.

Получились два уравнения с двумя неизвестными: I1 и I3.

Умножив второе уравнение на и сложив его с уравнением с первым, получим:

,

Подставив значение тока I3 в уравнение , получим:

,

Ток I2 определим из:

Ток I1 и I2 имеют положительные значения, а I3 – отрицательное, следовательно, направления первых двух токов были выбраны правильно, а тока I3 – неправильно.

Действительное направление тока I3 указано пунктирной стрелкой на рис. 14. При этом сумма притекающих к узлу А токов I1+I2=0,24+0,36=0,6 А равна оттекающему току I3=0,6 А.

*Дополнительные вопросы к задаче

1. Сколько электрических контуров имеют цепи, показанные на рис.14 ?

Электрическая цепь (рис.14) имеет три контура: ГАБВГ, ГЖДВГ и АЖДБА. Для составления двух уравнений по второму закону Кирхгофа необходимо и достаточно выбрать два контура. Проще всего выбрать контуры, образующие отдельные ячейки, в нашем случае ГАБВГ и АЖДБА. Число ячеек всегда равно числу независимых уравнений, которые надо составить по второму закону Кирхгофа.

Для расчёта цепи на рис.14 при помощи законов Кирхгофа надо составить пять независимых уравнений (цепь состоит из пяти ветвей). Цепь имеет (А, Б, В), значит, по первому закону Кирхгофа можно составить два независимых уравнения. Недостающие три уравнения нужно составить по второму закону Кирхгофа.

В цепи по рис.14 можно наметить шесть контуров (АВКА, АБВКА, АБМКА, АБВА, АБМВА и БМВБ), но независимые уравнения получаются только для трёх контуров, например для трёх ячеек: АВКА, АБВА, и БМВБ, в каждую из которых входит новая ветвь.

Итак, разветвлённая цепь электрическая цепь имеет больше контуров, чем нужно и можно использовать для составления уравнений.

2. Как вести расчёт, если заданы значения токов, но неизвестны другие параметры цепи?

Очевидно, что из трёх независимых уравнений , составленных для цепи на рис.14 , можно определить любые три неизвестные величины. например, при заданных значениях токов и сопротивлений можно определить ЭДС Е1, Е2 и Е3, а по известным токам и ЭДС – величины трёх сопротивлений.

Итак, порядок расчёта цепи по методу уравнений Кирхгофа не зависит от того, какие величины заданы и какие неизвестны. Число неизвестных величин не должно быть больше числа независимых уравнений, которые можно составить по первому и второму закону Кирхгофа.

3. Следует ли принимать одинаковое направление обхода для всех контуров?

При составлении уравнений было выбрано одно и то же направление обхода этих контуров (по направлению движения часовой стрелки). Приняв для одного из них, например АЖДБА (рис. 14), противоположное направление обхода, получим:

Сравнивая уравнение (4.2) и (4.7), легко убедится, что они тождественны, так как различают только противоположными знаками всех членов уравнения.

Итак, для каждого контура направление обхода может быть выбрано произвольно.

4. Целесообразно ли предыдущую задачу решать методом уравнений Кирхгофа?

Электрическая цепь по рис. 15 имеет пять неизвестных токов, и для их вычисления потребовалась бы пять уравнений (два по первому и три по второму закону Кирхгофа).


Решение системы из пяти не проще, чем вычисление токов в двух простых цепях по методу наложения.

В схеме (рис. 15) трехпроводной линии постоянного тока ЭДС источников Е1 = 253в и Е2 = 225в, их внутренние сопротивление r01 = r02 = 0,5 ом, сопротивления главных проводов r1 = r2 = 0,5 ом и нейтрального провода r0 = 1 ом, сопротивления пассивных приемников энергии r3 = 40 ом, r4 = 20 ом и r5 = 40 ом.

Определить токи, применив законы Кирхгофа.

В схеме имеются шесть ветвей и, следовательно, число неизвестных токов равно шести. Число узлов равно четырем.

Намечаем на схеме предполагаемые направления токов в ветвях. После этого составляем, основываясь на первый закон Кирхгофа, три независимых уравнения:

;

;

;

Недостающее уравнение для трех замкнутых контуров I, II и III составляем на основании второго закона Кирхгофа. Направление обхода контуров выбираем по часовой стрелке.

;

;

для контура III

.

Решение системы уравнений с шестью неизвестными дает: I3 = 6 a, I5 = 11 a, I4 = 10 a, I2 = 21 a, I1 = 17 a и I0 = 4 a.

Найденные токи проверим, подставив их значения в уравнения, составленные на основании первого закона Кирхгофа:

Задачи по ТОЭ с решением и примерами

Содержание:

Метод преобразования схем

Метод преобразования электрических схем применяют для расчета сложных испей путем преобразований треугольника сопротивлений в эквивалентную звезду или звезды сопротивлений в эквивалентный треугольник.

Контур, состоящий из трех сопротивлений , имеющий три узловые точки , образует треугольник сопротивлений (рис. 4.6а).

Электрическая цепь, состоящая из трех сопротивлений соединенных в одной узловой точке О, образует звезду сопротивлений (рис. 4.66).

Расчет некоторых сложных цепей значительно упрощается, если соединение звездой в них заменить соединением треуголь-• ником или наоборот.

Преобразование схемы должно производиться так, чтобы при неизменном напряжении между точками токи звезды и треугольника оставались без изменений.

Треугольник и звезда, удовлетворяющие этому условию, называются эквивалентными.

Для такого преобразования рекомендуется изображать схему цепи без заменяемого треугольника (или звезды), но с обозначенными вершинами и к этим обозначенным вершинам подсоединить эквивалентную звезду (или треугольник).

При замене треугольника эквивалентной звездой сопротивления звезды определяются следующими выражениями:

Таким образом, каждое сопротивление эквивалентной звезды равно отношению произведения двух примыкающих к соответствующей узловой точке сопротивлений треугольника к сумме трех его сопротивлений.

При замене звезды эквивалентным треугольником каждое сопротивление треугольника определяется следующими выражениями:

Каждое сопротивление эквивалентного треугольника равно сумме трех слагаемых: двух примыкающих к соответствующим точкам сопротивлений звезды и отношению произведения этих сопротивлений к третьему сопротивлению звезды.

Пример задачи с решением 4.4

с Определить токи во всех ветвях цепи (рис. 4.7а) при следующих Исходных данных:

Решение

Дчя расчета этой цепи заменим треугольник сопротивлений, Подключенных к точкам , эквивалентной звездой, подключенной к тем же точкам (рис. 4.76).

Определим величины сопротивлений эквивалентной звезды:

Пример задачи с решением 4.6

Определить токи во всех ветвях цепи, схема которой приведена на рис. 4.8а, если задано:

Решение

Количество ветвей и соответственно различных токов в цепи (рис. 4.8а) равно пяти. Произвольно выбирается направление этих токов.

Расчетных схем две, так как в цепи два источника с ЭДС и . Вычисляются частичные токи, созданные в ветвях первым источником . этого изображается та же цепь, только вместо — его внутреннее сопротивление . Направление частичных токов в ветвях указаны в схеме рис. 4.86.

Вычисление сопротивлений и токов производится методом свертывания.

Первые частичные токи в цепи (рис. 4.86), созданные источником , имеют следующие значения:

Вычисляются частичные токи, созданные вторым источником. Для этого изображается исходная цепь, в которой источник :ЭДС заменен его внутренним сопротивлением . Направления частичных токов в ветвях указаны на схеме рис. 4.8в. 1 Сопротивления и токи определяются методом свертывания.

Вторые частичные токи в цепи (рис. 4.8в) имеют следующие значения:

Искомые токи в рассматриваемой цепи (рис. 4.8а) определяют алгебраической суммой частичных токов (см. рис. 4.8):

Ток имеет знак «минус», следовательно, его направлен и противоположно произвольно выбранному, он направлен из точ ки А в точку В.

Метод узлового напряжения

Расчет сложных разветвленных электрических цепей с несколькими источниками и двумя узлам, можно осуществить методом узлового напряжения. Напряжение между узлами и называется узловым. -узловое напряжение цепи (рис. 4.9)

Для различных ветвей (рис. 4.9) узловое напряжение можно определить следующим образом.

1. Поскольку для первой ветви ис точник работает в режиме генератор;

Величина тока определяется как

где проводимость 1-й ветви.

2. Для второй ветви источник работает в режиме потребителя следовательно

3. Для третьей ветви

(Потенциал точки для третьей ветви больше, чем потенции, точки А, так как ток направлен из точки с большим потенциалов в точку с меньшим потенциалом.)

Величину тока можно определить по закону Ома

По первому закону Кирхгофа для узловой точки А (или В):

Подставив в уравнение (4.6) значения токов из уравнений (4.3), (4.4) и (4.5) для рассматриваемой цепи, можно записать

Решив это уравнение относительно узлового напряжения , ожно определить его значение

Следовательно, величина узлового напряжения определяется от-ошением алгебраической суммы произведений ЭДС и проводимости етвей с источниками к сумме проводимостей всех ветвей.

Для определения знака алгебраической суммы направление токов во всех ветвях выбирают одинаковым, т. е. от одного узла другому (рис. 4.9). Тогда ЭДС источника, работающего в режиме генератора, берется со знаком «плюс», а источника, работающего в режиме потребителя, со знаком «минус».

Таким образом, для определения токов в сложной цепи с двумя злами вычисляется сначала узловое напряжение по выражению 4.9), а затем значения токов по формулам (4.3), (4.4), (4.5).

Узловое напряжение может получиться положительным или ггринательным, как и ток в любой ветви.

Знак «минус» в вычисленном значении тока указывает, что реальное направление тока в данной ветви противоположно ‘словно выбранному.

Пример задачи с решением 4.7

В ветвях схемы (рис. 4.10) требуется определить токи, если:

Решение

I. Узловое напряжение

где

тогда

Токи в ветвях будут соответственно равны

Как видно из полученных результатов, направление токов противоположно выбранному. Следовательно, источник работает в режиме потребителя.

Пример задачи с решением 4.8

Два генератора (рис. 4.11), ЭДС и внутреннее сопротивление которых одинаковы: , питают потребитель (нагрузку) с сопротивлением

Как изменится ток второго генератора:

1) при увеличении его ЭДС на 1 %;

2) при увеличении узлового напряжения на 1 %.

Решение

Определяется узловое напряжение цепи (рис. 4.11)

Тогда ток второго генератора

I. При увеличении на 1 %, его величина станет равной

тогда

При этом |;довательно, увеличение ЭДС генератора на 1 % приводит личению тока этого генератора на 24 %.

2. При увеличении узлового напряжения на 1 % его величина станет равной

При этом

мм образом, ток второго генератора при увеличении узлово-.пряжения на 1 % уменьшится на 23,4 %.

Знак «минус» означает уменьшение, а не увеличение тока

Параллельное соединение генераторов

Как видно из решения примера 4.8, незначительное изменение ЭДС одного из параллельно работающих генераторов значительно изменяет ток этого генератора.

Причиной значительного изменения тока генератора может также незначительное изменение узлового напряжения 4.11), что связано с изменением сопротивлений участков или ЭДС источников.

Параллельное соединение генераторов нашло широкое примере в электрических сетях энергоснабжения потребителей осветительная и силовая нагрузка).

Значительные изменения токов генераторов, вызванные незна-пьными изменениями параметров схемы электропитания постелей от параллельно включенных генераторов, необходимо ывать при проектировании и эксплуатации электроустано-в частности тот факт, что в различное время суток работает ое количество параллельно включенных генераторов.

Увеличение ЭДС какого-либо из параллельно работающих генераторов приведет к тому, что ток этого генератора окажется в олько раз больше тока остальных генераторов. Этим обстоятельством пользуются, когда хотят «перевести нагрузку» с одного генератора на другой.

Генераторы окажутся также неодинаково загруженными при равых ЭДС, но при различных внутренних сопротивлениях. Более загруженными окажутся генераторы с меньшим внутренним сопротивлением.

И снижении ЭДС какого-либо из параллельно включенных раторов до величины узлового напряжения цепи ток в цепи этого генератора падает до нуля: . Генератор, находящийся в таком режиме, называется уравновешенным (скомпенсированным). Если ЭДС генератора станет меньше углового напряжения, то такой генератор начнет работать в режим потребителя.

Метод узловых и контурных уравнений

Метод узловых и контурных уравнений для расчета сложных электрических цепей подразумевает составление системы уравнений по законам Кирхгофа. При составлении системы уравнения должно учитываться следующее.

1. Число уравнений равно числу токов в цепи (число токов paвно числу ветвей в рассчитываемой цепи). Направление токов на ветвях выбирается произвольно.

2. По первому закону Кирхгофа составляется уравнение где n —число узловых точек в схеме.

3. Остальные уравнения составляются по второму закону Кирхгофа.

В результате решения системы уравнений определяются иске мые величины для сложной электрической цепи (например, вс токи при заданных значениях ЭДС источников и сопротивл

Пример задачи с решением 4.9

Составить необходимое и достаточное количество уравнени* по законам Кирхгофа для определения всех токов в цепи (рис. 4.12) методом узловых и контурный уравнений.

Решение

В рассматриваемой сложной цепи имеется 5 ветвей, сдедовательно, 5 различных токов, поэтому для расчета необходимо соста вить 5 уравнений, причем 2 уравнения — по первому закон: Кирхгофа (в цепи узловых точки ) и 3 уравнения по второму закону Кирхгофа (внутренним сопротивлением ис точников пренебрегаем, т. е. = О).

Обход по часовой стрелке.

Пример задачи с решением 4.10

Определить токи в примере 4.7 методом узловых и контурных уравнений (схема рис. 4.10) при тех же заданных условиях.

Решение

При выбранном в схеме рис. 4.10 направлении токов составим необходимое и достаточное количество уравнений по законам Кирхгофа:

1.

2. (обход по часовой стрелке)

3. (обход против часовой стрелки)

К уравнение (2) подставляются значения тока из уравнения и числовые значения заданных величин. Тогда уравнения (2) будут выглядеть так:

Иля сокращения тока при суммировании уравнений (2) и (3) К числовые значения уравнения (3) умножаются на 2 (два).

Откуда

Из уравнения

И из уравнения (1):

Очевидно, что полученный результат совпадает с результатом полученным методом узлового напряжения.

Метод контурных токов

При расчете сложных цепей методом узловых и контурных уравнений (по законам Кирхгофа) необходимо решать систему из большого количества уравнений, что значительно затрудняет вычисления.

Так, для схемы рис. 4.13 необходимо составить и рассчитать систему из 7-ми уравнений.

Ту же задачу можно решить, записав только 4 уравнения по второму закону Кирхгофа, если воспользоваться методом контурных токов.

Суть метода состоит в том, что в схеме выделяют т независимых контуров, в каждом из которых произвольно направлены (см. пунктирные стрелки) контурные токи . Контурный ток — это расчетная величина, измерить которую невозможно.

Как видно из рис. 4.13, отдельные ветви схемы входят в два смежных контура. Действительный ток в такой ветви определяется алгебраической суммой контурных токов смежных контуров.

Для определения контурных токов составляют m уравнений по второму закону Кирхгофа. В каждое уравнение входит алгебраическая сумма ЭДС, включенных в данный контур (по одну сторону от знака равенства), и общее падение напряжения в данном контуре, созданное контурным током данного контура и контурными токами смежных контуров (по другую сторону знака равенства).

Для данной схемы (рис. 4.13) необходимо составить 4 уравнено знаком «плюс» записываются ЭДС и падения напряжению разные стороны знака равенства), действующие в направлении контурного тока, со знаком «минус» — направленные против контурного тока.

схема уравнений для схемы (рис. 4.13):

Решением системы уравнений вычисляются значения контурных токов, которые и определяют действительные токи в каждой схемы (рис. 4.13).

Пример задачи с решением 4.11

Определить токи во всех участках сложной цепи (рис. 4.14), если:

Решение

бходимо составить 3 уравнения по второму закону Кирхгофа для определения контурных токов (направление рных токов выбрано произвольно указано пунктирными линиями).

Подставляются числовые значения величин

Из уравнения (2) определяется ток

Значение тока (выражение (2’)) подставляется в уравнение

То же значение тока подставляется в уравнение (3):

Из полученного уравнения (3) вычитается полученное уравнение (1). В результате получим

Откуда контурный ток

Из уравнения (3) определяется контурный ток

Из уравнения (2′) определяется ток

Вычисляются реальные токи в заданной цепи:

Проверяется правильность решения для 1-го контура (рис. 4.14).

Такую же проверку можно произвести и для других контуров (2-го и 3-го):

Проверка показала правильность решения.

Метод эквивалентного генератора

Метод эквивалентного генератора рационально применять в случае необходимости определения тока (напряжения, мощности и др.) только одной ветви сложной электрической цепи.

Для этой цели разбивают сложную электрическую цепь на две части — на сопротивление , ток которого нужно определить, и всю остальную цепь, ее называют активным двухполюсником, так как эта часть имеет две клеммы , к которой и подключается сопротивление (рис. 4.15).

Активным этот двухполюсник называют потому, что в нем имеется источник ЭДС. Этот активный двухполюсник обладает определенной ЭДС и определенным внутренним сопротивлением азывается эквивалентным генератором.

Ток в резисторе с сопротивлением R определяют по закону Ома

Таким образом, определение тока I сводится к вычислению ЭДС эквивалентного гора и его внутреннего сопротивления

чина ЭДС определяется любым методом расчета цепей постоянного тока относительно точек при разомкнутых клеммах, т. е. в режиме холостого хода. Практически эту ЭДС можно измерить вольтметром, подключенным к клеммам лостом ходе.

реннее сопротивление эквивалентного генератора Лж вы-тся относительно точек А и В после предварительной ,i всех источников сложной схемы эквивалентного генера-х внутренними сопротивлениями.

ггически для определения внутреннего сопротивления эк-нтного генератора измеряют амперметром ток между точ-4 и В работающего двухполюсника при коротком замыка-ак как сопротивление амперметра настолько мало, что им I пренебречь. Тогда

где — напряжение холостого хода, — ток короткого замыкания

Такой метод практического определения внутреннего сопротивления эквивалентного генератора называется методом холостого хода и короткого замыкания.

Расчет параметров эквивалентного генератора, его ЭДС и ннего сопротивления , рассматриваются в примерах 4.12

Пример задачи с решением 4.12

Определить ток в сопротивлении , подключенном к точкам А ектрической цепи (рис. 4.8а) примера 4.6 методом эквивалентного генератора.

Решение

Для определения тока в сопротивлении определим ЭДС эквивалентного генератора (рис. 4.16а) и его внутреннее сопро тивление (рис. 4.166) при холостом ходе, т. е. разомкнутой цеш (между точками ).

Знак «минус» обусловлен тем, что источники в схеме включень встречно и потенциал в точке А больше потенциала в точке В, так как (см. пример 4.6).

Следовательно,

Внутреннее сопротивление эквивалентного генератора

Искомый ток

такой же ток получен в примере 4.6 на сопротивлении

Пример задачи с решением 4.13

На схеме рис. 4.17а сопротивления плеч моста равны

Сопротивление гальванометра ЭДС источника . Методом эквивалентного генератора определить в ветви гальванометра (между точками А и В).

Решение

Для определения тока в цепи гальванометра методом эквивалентного генератора необходимо вычислить ЭДС эквивалентного генератора между точками А и В (рис. 4.176) и внутреннее сопротивление эквивалентного генератора относительно точек А и В при (отсутствии гальванометра, заменив в схеме (рис. 4.17в) источник ЭДС , его внутренним сопротивлением равным нулю.

Для определения ЭДС эквивалентного генератора принимают потенциал точки С схемы (рис. 4.176) равным нулю, т. е.

При замене источника ЭДС его внутренним сопротивле-нием, равным нулю, замыкаются накоротко точки С и D схемы (рис. 4.17в). При этом (рис. 4.17г) сопротивления соединены между собой параллельно. Также параллельно соединены между собой сопротивления . Между точками А и В сопротивления соединены последовательно. Следовательно, сопротивление эквивалентного генератора относительно точек А и В будет равно

Тогда ток в ветви с гальванометром, который направлен из точки В в точку А, т. е. из точки с большим потенциалом в точку с меньшим потенциалом (рис. 4.17а), будет равен

Эти страницы вам могут пригодиться:

На странице -> решение задач по электротехнике собраны решения задач и заданий с решёнными примерами по всем темам теоретических основ электротехники (ТОЭ).

Услуги:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Расчёт электрической цепи постоянного тока методом узловых и контурных уравнений.

Этот принцип основан на первом и втором законе Кирхгофа. Он не требует преобразования схемы.

Порядок расчёта:

1. Произвольно задаёмся направлением токов в ветвях.

Важно! При выборе направления токов в ветвях, необходимо выполнения двух условий:
1. Ток должен вытекать из узла через одну или несколько других ветвей;
2. Хотя бы один ток должен входить в узел.

Красным выделены изменения после первого действия

Синим выделены изменения после третьего пункта

2. Используя первый закон Кирхгофа составим уравнения для (n-1) узлов схемы. Где n – число узлов. То есть для схемы с четырьмя узлами, составляем три уравнения. Для этого:

  1. Обозначаем узлы буквами.
  2. Берём один конкретный узел (Например узел А) и смотрим как направлены токи в ветвях образующих узел. Если ток направлен в узел, то записываем его со знаком плюс, если из него то со знаком минус.
    0=I1-I4-I6 (Полученное уравнение)
  3. Повторяем пункт B ещё для двух узлов.
    0=-I3+I4+I5(Узел В)
    0=I3-I1-I2(Узел D)

3. Используя второй закон Кирхгофа составим уравнения для каждого контура схемы. Для этого произвольно зададимся направлением обхода контура (по часовой или против часовой). Для контура ABDA направление обхода контура выберем по часовой стрелке.

3.1 Смотрим, как направлена ЭДС относительно обхода контура. Если направление обхода контура совпадает, то значение ЭДС записываем со знаком плюс (в левой части уравнения), если не совпадает, то со знаком минус (записываем также в левой части уравнения)

3.2 Смотрим, как направлено падение напряжения на сопротивлении контура.(То есть смотрим как направлены токи, только записываем в уравнение произведение тока на сопротивление через которое ток протекает в данном контуре). Если направление обхода контура совпадает, то падение напряжения записываем со знаком плюс (в правой части уравнения), если не совпадает, то со знаком минус (записываем также в правой части уравнения)

3.3 Произвести действия 3.1 и 3.2 для остальных контуров. У вас должна получится система из n уравнений, где n — количество контуров в цепи.

Контур ABDA E1=I1*(R1+R01)+I4*R4+I3*R3

Контур BCDB E2=I2*(R2+R02)+I3*R3+I5*R5

Контур ABCA 0=I6*R6-I4*R4+I5*R5

4. Решаем полученную систему уравнений и находим величины токов во всех ветвях.

Уберём лишние токи из системы используя уравнения полученные во втором пункте поскольку у нас три уравнения поэтому мы оставляем только три любых тока. Для данного примера я рекомендую оставить токи I1 I2 I4.

Выражаем из трёх уравнений токи I3 I5 I6 через токи I1 I2 I4.

I3=I1+I2(Узел D)

I5=I3-I4(Узел В)

I5=I3-I4(Узел В) В этом уравнении сразу не получилось выразить I5 через токи I1 I2 I4, поэтому вместо тока I3 подставим уравнение для узла D и получим:

Заменим токи I3 I5 I6 и получим уравнения с тремя токами :

Раскрываем скобки подставляем значения сопротивлений из условия и получаем например вот такие три уравнения:

40 = 71*I1 + 24*I2 + 14*I4

20 = 55*I1 + 93*I2 — 61*I4

0 = 60*I1 + 16*I2 — 81*I4

Если при решении системы ток получается отрицательным (со знаком —), значит его действительное направление противоположно тому направлению которое мы задали в первом действии.

Правильность решения можно проверить с помощью баланса мощностей.


источники:

http://natalibrilenova.ru/toe-zadachi-s-resheniem-i-primerami/

http://electrikam.com/raschyot-elektricheskoj-cepi-postoyannogo-toka-metodom-uzlovyx-i-konturnyx-uravnenij/