Задачи на основное уравнение динамики вращательного движения

Задачи на вращательное движение тела в теоретической механике

Задачи на вращательное движение тела:

Мерой инертности материальной точки, а также тела при поступательном движении является их масса.

Если же тело вращается, то мерой инертности служит его момент инерции —величина, зависящая от величины массы тела и от того, каким образом масса распределена относительно оси вращения тела.

Как известно, моментом инерции тела относительно некоторой оси называется величина, составленная из суммы произведений масс всех материальных точек тела на квадраты расстояний от этих точек до оси вращения.

В математической форме величину момента инерции тела можно представить такой формулой:

Этой формулой можно пользоваться для определения моментов инерции тел, имеющих геометрическую форму тел вращения.

Если тело составлено из нескольких частей, имеющих определенную геометрическую форму, удобно использовать еще формулу


где Jc—момент инерции тела относительно центральной оси (т. е. относительно оси, проходящей через центр тяжести тела); J — момент инерции тела относительно оси, параллельной центральной оси; m—масса тела и а —расстояние между осями.

Если тело имеет очень сложную форму, то момент инерции определяется либо из опыта, либо по формулам, приведенным в различных технических справочниках.

Приведем несколько формул для определения моментов инерции тел (во всех формулах т—масса тела, а линейные размеры обозначены на рисунках).

1. Момент инерции тонкого прямого

стержня относительно его центральной оси, перпендикулярной к стержню (рис. 265,а)

2. Момент инерции тонкого прямого стержня относительно оси, перпендикулярной к стержню и расположенной у одного из его концов (рис. 265, б):


3. Момент инерции сплошного однородного цилиндра относительно его геометрической оси (рис. 266, а)

4. Mомент инерции полого однородного цилиндра относительно его геометрической оси (рис. 266, б)

Сопоставляя между собой при помощи рисунков формулы (I) и (2), а также (3) и (4). необходимо учитывать то, что при одной и тон же массе стержней и одинаковой длине второй стержень обладает в четыре раза большим моментом инерции (см. рис. 265, б), а также при одинаковых внешних размерах цилиндров и одинаковой массе (если цилиндры изготовлены из различных материалов, например из алюминия и стали) полый цилиндр обладает большим моментом инерции.

Если в формуле (4) пренебречь толщиной стенки цилиндра, т. е считать, что D—d. (вся масса распределена по ободу цилиндра), то

Единицей измерения момента инерции тела являются в СИ:

в системе МКГСС:

При вращательном движении (см. § 45-11) движущим фактором является вращающий момент (пара сил).

Если алгебраическая сумма моментов всех пар сил, приложенных к телу, имеющему ось вращения, не равна нулю, то тело приобретает угловое ускорение, числовое значение которого прямо пропорционально вращающему моменту

В этом уравнении, выражающем основной закон динамики для вращательного движения тела, множителем пропорциональности является момент инерции тела. Тело с большим моментом инерции труднее привести во вращение.

Кинетическая энергия вращающегося тела

Если тело находится в плоскопараллельном движении, например катящееся колесо, то его кинетическая энергия складывается из двух слагаемых:

где —кинетическая энергия, получающаяся от поступательной части этого сложного движения (см. § 37-8) при скорости равной скорости центра тяжести тела, а кинетическая энергия от вращательной части, причем J —момент инерции относительно оси, проходящей через центр тяжести тела.

Задача №1

Два цилиндра, изготовленных из различных материалов (см. рис. 266), имеют одинаковую массу = 80 кг; их наружные диаметры = 240 мм, а внутренний диаметр полого цилиндра = 200 мм. Полый цилиндр вращается вокруг собственной оси с угловой скоростью С какой скоростью должен вращаться сплошной цилиндр, чтобы оба цилиндра имели одинаковый запас кинетической энергии?

1. Если кинетические энергии обоих цилиндров обозначить, соответственно,


то по условию задачи


2. Если определять числовые значения моментов инерции обоих цилиндров, то

Определим скорость сплошного цилиндра

3. Если же числовые значения моментов инерции не определять, то

В полученную формулу


подставим числовые значения диаметров:

Для второго варианта решения, как видно, массу цилиндров можно и не задавать.

Задача №2

Стержень длиной и массой 3 кг имеет на концах шарообразные массы по 2 кг каждая (диаметры шариков d—10 см). Какой вращающий момент нужно приложить к стержню, чтобы привести его во вращение с угловым ускорением вокруг оси, перпендикулярной к стержню и

проходящей через центр тяжести системы (рис. 267)?

1. Чтобы определить необходимый вращающий момент, нужно воспользоваться уравнением основного закона динамики для вращательного движения тела


но предварительно надо определить момент инерции системы стержня и шариков.

2. Находим момент инерции этой системы который складывается из момента инерции стержня и двух моментов инерции шариков которые считаем материальными точками, т. е. при определении моментов инерции шариков принимаем, что их массы сосредоточены в центрах шариков на расстоянии

Подставим числовые значения:


3. И теперь определим вращающий момент, необходимый для сообщения стержню ускорения

Задача №3

Тормозной шкив, масса которого m— 2 кг, диаметр d—0,8 м, имеет форму сплошного диска и вращается но инерции с угловой скоростьюДля остановки вала

к шкиву прижимают тормозную колодку k с силой Q—5 н. Через сколько секунд вал остановится и сколько оборотов он сделает до остановки, если коэффициент трения колодки о шкив f — 0,4? Трением в подшипниках вала, на котором насажен шкив, пренебречь; массу вала не учитывать.

Решение 1 — при помощи основного закона для вращающегося тела.

1. Изобразим шкив на рис. 268. Прижатая к шкиву колодка создает силу трения F=fQ, направленную в сторону, противоположную вращению колеса. Таким образом, на шкив с момента прижатия колодки начинает действовать тормозной момент, направленный в сторону, противоположную его

2. Шкив имеет форму сплошного диска, его момент инерции определяется но формуле


3. Из основного уравнения динамики для вращательного движения находим угловое ускорение е:

4. Из формулы для углового ускорения равнопеременного вращения находим время торможения:

5. По уравнению равнопеременного вращения определяем угол поворота шкива (вала) за это время:

6. Находим число оборотов вала, сделанное им с момента начала торможения до остановки:


Эту задачу можно решить и другим способом (используя закон кинетической энергии для вращающегося тела).

1. Закон кинетической энергии вращающегося тела выражается уравнением

2. В данном случае тормозной момент производит при остановке шкива (вала) работу

так как конечная угловая скорость энергии шкива имеет вид

Отсюда (значение J —найдено в первом решении)

Число оборотов вала


4. Время торможения можно найти из формулы

Задача №4

Цилиндр 1, масса которого и диаметр d=24 сж, может свободно вращаться около горизонтальной оси. На цилиндр намотана гибкая нить, имеющая на конце груз 2


массой Падая, груз разматывает нить и вращает цилиндр (рис. 269, а).

Определить угловое ускорение цилиндра, натяжение нити, кинетическую энергию груза А и цилиндра через t = 4 сек после начала движения.

Массой нити и трением в оси цилиндра пренебречь.

Решение — при помощи метода кинетостатики и уравнения основного закона динамики для вращающегося тела.

1. В задаче рассматриваются два связанных между собой тела: вращающийся цилиндр и поступательно двигающийся груз. Мысленно разрежем нить и изобразим оба тела с действующими на них силами отдельно друг от друга.

2. На рис. 269, б показан цилиндр, на который действует вращающий момент нары сил созданной натяжением нити (сила приложена к подшипнику цилиндра, см. § 45-11):

3. Вращение цилиндра определяется уравнением:

(а)
В полученное выражение для Т входит вторая неизвестная величина е. Чтобы облегчить дальнейшие вычисления, подставим сюда те величины, которые известны (в единицах СИ: и d = 0,24 м):
(а’)
4. Изобразим теперь (рис. 269, в) груз, на который действуют его вес реакция нити Т, равная ее натяжению. Так как цилиндр падает с ускорением то силы не уравновешивают друг друга. Добавим к ним силу инерции Тогда уравнение равновесия сил примет вид

Заменим в последнем уравнении силу инерции и вес груза их значениями

5. Считая нить нерастяжимой, получаем, что ускорение а, груза равно ускорению любой точки нити, а следовательно, и точки А на ободе цилиндра (см. рис. 269, б). Но точка А принадлежит телу, вращающемуся с угловым ускорением е, поэтому

Получено второе уравнение с теми же неизвестными Т и е.

Подставив в (б) числовые значения и d=0,24 м), получаем

(б’)

6. Решим систему уравнений (а’) и (б’). Правые части обоих уравнений равны 7, значит

Подставим найденное значение е в любое из уравнений, например в (а’):

7. Определим кинетическую энергию цилиндра и груза через t = 4 сек после начала движения системы:

8. Таким образом, общий запас кинетической энергии обоих тел

Решение 2 —при помощи закона кинетической энергии.

1. Второе решение начинается с того, чем заканчивается первое.

Через t — 4 сек оба тела приобретают кинетическую энергию благодаря работе, произведенной грузом 2 при падении с высоты h (рис.70)

кинетическая энергия цилиндра

Здесь h —путь, пройденный грузом за t = 4 сек с ускорением поэтому

4. Подставим в левую часть равенства (а) значение h и сократим обе части равенства на общие множители:

откуда

5. Натяжение Т нити найдем при помощи уравнения основного
закона динамики
Здесь

поэтому

6. Так как значение углового ускорения е известно, легко найти величины кинетических энергий(см. п. 2 решения).

Вращательное движение тела

При изучении темы ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТЕЛА вы научитесь решать простые задачи кинематики тела. В таких задачах вводятся векторные величины — угловая скорость и угловое ускорение Важно понять, что для вращательного движения тела эти векторы постоянно направлены по оси вращения. При сферическом движении (§ 10.1) векторы угловой скорости и углового ускорения могут лежать на разных прямых, и направления их в общем случае зависят от времени.

ПОСТАНОВКА ЗАДАЧИ. Твердое тело вращается вокруг неподвижной оси. Заданы некоторые кинематические характеристики движения тела и (или) кинематические характеристики движения точки этого тела. Найти остальные кинематические характеристики движения тела или точки.

Пусть тело вращается вокруг оси z. Кинематические характеристики движения тела:

  • — угол поворота
  • — угловая скорость
  • — угловое ускорение

Кинематические характеристики точки на теле:

  • — радиус траектории (расстояние до оси вращения) R:
  • — скорость
  • — ускорение

1. Записываем систему уравнений для всех величин, входящих в условие задачи. В зависимости от условия возможны три основных варианта решения.
Гл.7.Вращательное движение тела

Неизвестный закон вращения. Записываем систему двух уравнений для скорости точки, лежащей на расстоянии R от оси вращения, и ее ускорения W:

Для решения задачи необходимо, чтобы три из пяти величин входящих в (1), были заданы в условии.

Вращение с постоянной угловой скоростью. Интегрируя уравнение ,приполучаем

Как правило, отсчет ведется от поэтому в системе трех уравнений (1-2) содержатся семь величин четыре из которых должны быть заданы в условии задачи.

Вращение с постоянным угловым ускорением. Дважды интегрируя уравнение

получаем, при

где — начальная угловая скорость. Совместно с (1) получаем систему четырех уравнений для восьми величин четыре из которых должны быть заданы в условии задачи.

2. Решаем систему. Находим искомые величины.

Замечание. Ряд величин задан в тексте задач неявно. Например, угол поворота может быть задан числом оборотов Слова «покой» и «остановка» соответствуют математической записи

Задача №5

Диск вращается вокруг неподвижной оси с постоянным угловым ускорением Найти ускорение точки, лежащей на расстоянии 4 см от оси вращения, через 7 с после начала движения из состояния покоя.

1. В задаче задано постоянное угловое ускорение. Записываем систему уравнений для величин, входящих в условие задачи:

По условию задачи диск в начальный момент находился в покое, следовательно, Кроме того, при t = 7 с, даны значения R = 4 см, Решая систему двух уравнений (4) с двумя неизвестными и W, находим

Ответ.

Передача вращения

Постановка Задачи. Механизм состоит из вращающихся на неподвижных осях блоков и поступательно движущихся элементов. Все элементы находятся во фрикционном, зубчатом или ременном зацеплениях. Задана какая-либо кинематическая характеристика одного из тел. Найти кинематические характеристики других тел.

1. Определяем кинематические характеристики тела, с заданным законом движения. Если это тело движется прямолинейно поступательно, то скорость и ускорение любой его точки имеет вид

где — закон движения тела. При заданном вращательном движении находим угловую скорость и угловое ускорение:

где — закон вращения тела (зависимость угла поворота в радианах от времени).

2. Определяем угловую скорость тела, связанного нерастяжимой нитью (ремнем, тросом), фрикционно или зубчатым зацеплением с телом, угловая скорость которого известна:

где — радиусы ободов колес (блоков) 1, 2, на которые надет ремень в случае ременной передачи, или радиусы колес, находящихся в зацеплении; — проекции угловых скоростей колес на ось, параллельную осям вращения. Знак минус берем при внешнем зацеплении, или крестообразной ременной передаче, когда вращение колес происходит в разные стороны. При внутреннем зацеплении (рис. 83) или простой ременной передаче (рис. 84) берем знак плюс. Отношение называется передаточным числом от тела 1 к телу 2. Для зубчатых соединений аналогом (1) является соотношение угловых скоростей

в которое вместо радиусов входят числа зубцов пропорциональные длинам окружностей шестеренок.

Если поступательное движение тела 1 передается вращательному движению тела 2 (или наоборот), то связь линейной и угловой скоростей имеет вид

где — радиус обода, находящегося в контакте с поступательно движущимся телом.

3. Повторяя п.2 для всех пар кинематически связанных тел, составляем и решаем систему уравнений для неизвестных линейных и угловых скоростей.

4. Дифференцируя уравнения полученной системы, получаем аналогичную систему для угловых и линейных ускорений. Например, из уравнения (1) следует, что

Аналогично, из (2) следует связь линейного ускорения поступательно движущегося тела и углового ускорения связанного с ним вращающегося тела:

где — тангенциальная составляющая ускорения точки вращающегося тела в месте контакта. Было бы ошибкой считать так как полное ускорение точки на вращающемся теле включает в себя и нормальную составляющую Решаем систему уравнений для ускорений.

Задача №6

Механизм состоит из двух колес 1, 3 и блока 2, вращающихся на неподвижных осях. Ведущее колесо 1 механизма соединено ремнем с внутренним ободом блока 2. Внешний обод блока находится во фрикционном зацеплении с колесом 3 (рис. 84). Проскальзывание в точке зацепления отсутствует, ремень считать нерастяжимым.

Задан закон движения ведущего колеса: Стрелкой указано положительное направление изменения угла При t = 0.5 с найти ускорение точки М, лежащей на ободе колеса 3.

1. Находим угловую скорость ведущего колеса 1:

2. Определяем угловую скорость блока 2, связанного нерастяжимым ремнем с колесом 1:

где — радиусы ободов, огибаемые ремнем.

3. Колеса 2 и 3 находятся во внешнем зацеплении и вращаются в разные стороны, следовательно

Уравнения (3-5) образуют систему, решая которую, при t = 0.5 с, получаем

4. Дифференцируя уравнения системы (3-5), получаем аналогичную систему для угловых ускорений:

Решаем систему уравнений для ускорений (6) и получаем

Вычисляем ускорение точки М:

Ответ.

Рекомендую подробно изучить предмет:
  • Теоретическая механика
Ещё лекции с примерами решения и объяснением:
  • Равновесие тяжелой рамы
  • Расчет составной конструкции
  • Момент силы относительно оси
  • Равновесие вала
  • Неравномерное вращательное движение
  • Плоскопараллельное движение тела
  • Определение передаточных отношений различных передач
  • Задачи на поступательное движение тела

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Примеры решения задач по теме «Динамика вращательного движения твердого тела вокруг неподвижной оси»

Содержание

Методика изучения вращательное движение твердого тела в классах с углубленным изучением физики

Примеры решения задач по теме «Динамика вращательного движения твердого тела вокруг неподвижной оси»

Задача №2

Список используемой литературы

Одной из главных особенностей современного периода реформирования школьного образования является ориентация школьного образования на широкую дифференциацию обучения, позволяющую удовлетворить потребности каждого учащегося, в том числе и тех, кто проявляет особый интерес и способности к предмету.

В настоящий момент эта тенденция углубляется переходом старшей ступени средней школы на профильное обучение, что позволяет обеспечить восстановление преемственности среднего и высшего образования. Концепция профильного обучения определила его целью «повышение качества образования и установление равного доступа к полноценному образованию различных категорий учащихся в соответствии с их индивидуальными склонностями и потребностями».

Для учащихся это означает, что выбор физико-математического профиля обучения должен гарантировать такой уровень обучения, который бы позволял удовлетворить главную потребность данной группы учащихся -продолжение обучения в высших учебных заведениях соответствующего профиля. Выпускник средней школы, решивший продолжить образование в вузах физического и технического профилей должен иметь углубленную подготовку по физике. Она является необходимой базой обучения в этих вузах.

Решение задач профильного обучения физике возможно только при условии использования расширенных, углубленных программ. Анализ содержания программ для профильных классов различных авторских коллективов показывает, что все они содержат расширенный, по сравнению с базовыми программами, объем учебного материала по всем разделам физики и предусматривают его углубленное изучение. Составной частью содержания раздела «Механика» этих программ является теория вращательного движения.

При изучении кинематики вращательного движения формируются понятия угловых характеристик (угловое перемещение, угловая скорость, угловое ускорение), показывается их связь друг с другом и с линейными характеристиками движения. При изучении динамики вращательного движения формируются понятия «момент инерции», «момент импульса», происходит углубление понятия «момент силы». Особую важность представляют изучение основного закона динамики вращательного движения, закона сохранения момента импульса, теоремы Гюйгенса-Штейнера о вычислении момента инерции при переносе оси вращения, вычисление кинетической энергии вращающегося тела.

Знания кинематических и динамических характеристик и законов вращательного движения необходимы для углубленного изучения не только механики, но и других разделов физики. Теория вращательного движения, предполагающая на первый взгляд, «узкую» область использования, имеет большое значение для последующего изучения небесной механики, теории колебаний физического маятника, теорий теплоемкости веществ и поляризации диэлектриков, движения заряженных частиц в магнитном поле, магнитных свойств веществ, классической и квантовой моделей атома.

Анализ содержания заданий, предлагаемых абитуриентам на вступительных экзаменах по физике в ведущих физико-технических вузах страны, также показывает, что знания по теории вращательного движения способствуют успешному выполнению таких заданий.

Существующий уровень профессионально-методической подготовленности большинства учителей физики к преподаванию теории вращательного движения в условиях профильного обучения недостаточен, у многих учителей нет полного понимания роли теории вращательного движения в изучении школьного курса физики. Поэтому необходима более глубокая профессионально-методическая подготовка, которая позволила бы учителю максимально использовать дидактические возможности для решения задач профильного обучения.

Отсутствие в действующих программах педвузов по теории и методике преподавания физики раздела «Научно-методический анализ и методика изучения теории вращательного движения» приводит к тому, что выпускники педвузов также оказываются недостаточно подготовленными к решению стоящих перед ними профессиональных задач в процессе преподавания теории вращательного движения в профильных классах.

Таким образом, актуальность исследования определяется: противоречием между требованиями, предъявляемыми школьными профильными программами для углубленного изучения физики к уровню знаний учащихся по теории вращательного движения и реальным уровнем знаний учащихся; противоречием между задачами, стоящими перед учителем в процессе преподавания теории вращательного движения в классах с углубленным изучением физики, и уровнем его соответствующей профессионально-методической подготовки.

Проблемой исследования является поиск эффективных методов преподавания теории вращательного движения в профильных классах с углубленным изучением физики.

Цель исследования состоит в разработке эффективных методов преподавания теории вращательного движения, способствующих повышению уровня знаний учащихся, необходимых для глубокого усвоения школьного курса физики, и содержания соответствующей профессионально-методической подготовки учителя.

Объектом исследования являются процесс обучения физике учащихся классов с углубленным изучением предмета.

Предметом исследования является методика преподавания теории вращательного движения и других разделов в классах с углубленным изучением физики.

Гипотеза исследования: Если разработать методику преподавания кинематики и динамики вращательного движения, то это позволит повысить уровень знаний учащихся не только по теории вращательного движения, но и по другим разделам школьного курса физики, где используются элементы этой теории.

вращательный движение физика тело

Изучение динамики вращательного движения твердого тела преследует следующую цель: познакомить учащихся с законами движения тел под действием моментов приложенных к ним сил. Для этого необходимо ввести понятие момента силы, момента импульса, момента инерции, изучить закон сохранения момента импульса относительно неподвижной оси.

Изучение вращательного движения твердого тела целесообразно начать с изучения движения материальной точки по окружности. В этом случае легко ввести понятие момента сил относительно оси вращения и получить уравнение вращательного движения. Необходимо заметить, что эта тема является трудной для усвоения, поэтому для лучшего понимания и запоминания главных соотношений рекомендуется проводить сопоставления с формулами для поступательного движения. Учащимся известно, что динамика поступательного движения изучает причины возникновения ускорения тел и позволяет вычислить их направления и величину. Второй закон Ньютона устанавливает зависимость величины и направления ускорения от действующей силы и массы тела. Динамика вращательного движения изучает причины появления углового ускорения. Основное уравнение вращательного движения устанавливает зависимость углового ускорения от момента силы и момента инерции тела.

Далее, рассматривая твердое тело как систему материальных точек, вращающихся по окружности, центры которых лежат на оси вращения твердого тела, легко получить уравнение движения абсолютно твердого тела вокруг неподвижной оси. Трудность решения уравнения состоит в необходимости вычисления момента инерции тела относительно его оси вращения. Если нет возможности ознакомить учащихся с методами вычисления моментов инерции, например, из-за их недостаточной математической подготовки, то можно без вывода дать значения моментов инерции таких тел как шар, диск. Как показывает опыт, учащиеся с трудом усваивают понятие о векторном характере угловой скорости, момента силы и момента импульса. Поэтому необходимо выделить возможно большее время для изучения этого раздела, рассмотреть большее число примеров и задач (или делать это на внеклассных занятиях).

Продолжая аналогию с поступательным движением, рассмотрите закон сохранения момента импульса. При изучении динамики поступательного движения отмечалось, что в результате действия силы изменяется импульс тела. При вращательном движении изменяется момент импульса под действием момента силы. Если момент внешних сил равен нулю, то момент импульса сохраняется.

Ранее отмечалось, что внутренние силы не могут изменять скорость поступательного движения центра масс системы тел. Если же под действием внутренних сил изменить расположение отдельных частей вращающегося тела, то сохраняется общий момент импульса, а угловая скорость системы изменяется.

Для демонстрации этого эффекта можно воспользоваться установкой, в которой две шайбы надеваются на стержень, скрепленный с центробежной машиной. Шайбы соединены нитью (рис. 10). Вся система вращается с некоторой угловой скоростью. Когда нить пережигают, грузы разбегаются, момент инерции увеличивается, а угловая скорость уменьшается.

Пример решения задачи на закон сохранения момента импульса. Горизонтальная платформа массой M и радиусом R вращается с угловой скоростью. На краю платформы стоит человек массой m. С какой угловой скоростью будет вращаться платформа, если человек перейдет от края платформы к ее центру? Человека можно рассматривать как материальную точку.

Решение. Сумма моментов всех внешних сил относительно оси вращения равна нулю, поэтому можно применить закон сохранения момента импульса.

Момент инерции платформы

момент инерции человека

Первоначально сумма моментов импульса человека и платформы была

Конечная сумма моментов импульса

Из закона сохранения момента импульса следует:

Решая уравнение относительно омега 1 , получим

Конспект по физике «Динамика вращательного движения» (10 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Основное уравнение динамики вращательного движения .

Абсолютно твердое тело – тело, расстояние между двумя любыми точками которого остается неизменным при любых движениях и деформациях.

Следовательно, форма и размеры абсолютно твердого тела не изменяются при действии на него любых сил.

Абсолютно твердое тело – физическая модель (в природе не существует). Тело можно считать абсолютно твердым, если деформации малы.

Вращательное движение абсолютно твердого тела вокруг неподвижной оси – движение, при котором все точки тела описывают окружности, центры которых находятся на одной прямой, перпендикулярной плоскостям этих окружностей. Сама эта прямая есть ось вращения ( OO ’).

Примеры вращательного движения: вращение валов двигателей, колес, турбин, пропеллеров самолетов, вращение Земли вокруг совей оси.

Динамика вращательного движения абсолютно твердого тела изучает причины появления углового ускорения у тела, которое может вращаться вокруг оси и позволяет вычислить его величину.

При вращательном движении твердого тела вокруг закрепленной оси масса уже не является мерой его инертности, а сила недостаточна для характеристики внешнего воздействия. Таким образом, для описания вращательного движения твердого тела необходимо ввести новые характеристики:

1) При вращательном движении силовое воздействие характеризуется не силой, а

Момент силы (М) – векторная физическая величина, модуль которой равен произведению модуля силы на ее плечо.

Плечо силы ( d ) – длина перпендикуляра, опущенного из оси вращения на линию действия силы.

1Н∙м — момент силы в 1Н, линия действия которой отстоит от оси вращения на 1м.

Если линия действия силы проходит через ось вращения, то момент силы относительно этой оси равен нулю. Эта сила не вызывает вращения.

Вектор момента силы направлен вдоль оси вращения. Направление момента силы определяется по правилу правой руки . Для этого необходимо изобразить вектор силы и радиус вектор точки приложения этой силы исходящими из одной точки. За направление вращения выберем направление поворота от к . Расположим правую руку таким образом, чтобы направление кончиков четырех согнутых пальцев показывало направление поворота от к , тогда направление отогнутого большого пальца укажет направление момента силы.

2) Мерой инерции при вращательном движении является

Момент инерции материальной точки относительно оси вращения – физическая величина, равная , где — кратчайшее расстояние от оси вращения до точки.

1 кг∙м 2 – момент инерции тела, при котором под действием момента силы в 1Н∙м тело приобретает угловое ускорение в .

Момент инерции тела равен сумме моментов инерции отдельных его частей:

где — масса элемента абсолютно твердого тела; – кратчайшее расстояние от элемента тела до оси вращения.

Если масса тела является инвариантной величиной (одинаковой в различных системах отсчета) и не зависит от того, как тело движется, то момент инерции абсолютно твердого тела зависит :

1) От массы тела;

2) От формы и размеров тела;

3) От распределения массы относительно оси вращения (при переносе оси вращения, изменении ее направления, а также переносе отдельных частей тела его момент инерции изменяется) .

У твердых тел момент инерции относительно данной оси – постоянная величина. Момент инерции тел относительно оси вращения, проходящей через центр масс у многих тел известен:

Ось вращения проходит

через центр обруча, перпендикулярно его плоскости

через центр цилиндра, перпендикулярно плоскости его основания

через центр диска вдоль его диаметра

через центр шара

Стержень длиной l

через середину тонкого стержня, перпендикулярно ему

При переносе оси вращения или отдельных частей тела относительно этой оси его момент инерции изменяется. Соотношение между моментами инерции тела относительно некоторой оси вращения, проходящей через центр масс, относительно произвольной параллельной ей оси устанавливается с помощью теоремы Штейнера : момент инерции тела относительно произвольной оси вращения равен сумме момента инерции этого тела, взятого относительно параллельной ей оси, проходящей через центр масс, и произведения массы тела на квадрат расстояния между осями.

Проведем некоторую ось вращения О, проходящую через центр масс абсолютно твердого тела. Выберем другую произвольную ось О’, параллельную оси О и отстоящую от нее на расстоянии d . Пусть момент инерции относительно центра масс известен и равен Io . Тогда, согласно Тереме Штейнера момент инерции относительно оси O ’ равен:

Выведем основное уравнение динамики вращательного движения. Рассмотрим частицу массы m , вращающуюся вокруг оси по окружности радиуса R , под действием результирующей силы , лежащей в плоскости оси вращения. В инерциальной системе отсчета справедлив II закон Ньютона. Запишем его применительно к произвольному моменту времени: .

Разложим силу на две составляющие: нормальную и тангенциальную . Нормальная составляющая силы не способна вызвать вращение частицы с угловым ускорением, поэтому рассмотрим только действие ее тангенциальной составляющей. В проекции на тангенциальное направление II закон Ньютона примет вид: .

Но

основное уравнение динамики вращательного движения материальной точки.

Этому уравнению можно придать векторный характер, учитывая, что наличие момента сил вызывает появление параллельного ему вектора углового ускорения, направленного вдоль оси вращения:

произведение момента инерции материальной точки на угловое ускорение равно результирующему моменту сил, действующих на материальную точку.

Т.к. то

Для вывода основного уравнения динамики абсолютно твердого тела необходимо разделить это тело на достаточно малые элементы mi , каждый из которых можно считать материальной точкой. Записать для каждой материальной точки основное уравнение динамики вращательного движения материальной точки и все эти уравнения почленно сложить:

основное уравнение динамики вращательного движения абсолютно твердого тела.

Произведение момента инерции тела относительно оси вращения на угловое ускорение тела равно сумме моментов (относительно той же оси)всех внешних сил, приложенных к телу.

Основное уравнение динамики вращательного движения тела устанавливает зависимость углового ускорения от момента силы и момента инерции.

Ускорение при вращательном движении зависит :

1) Не только от массы, но и от ее распределения относительно оси вращения;

2) Не только от силы, но и от точки ее приложения и направления действия.


источники:

http://znakka4estva.ru/dokumenty/fizika-i-energetika/primery-resheniya-zadach-po-teme-dinamika-vraschatelnogo-dvizheniya-tverdogo-tela-vokrug-nepodvizhnoy-osi/

http://infourok.ru/konspekt-po-fizike-dinamika-vrashatelnogo-dvizheniya-10-klass-5780683.html