Задачи на решение уравнений методом крамера

Метод Крамера. Примеры решения систем линейных алгебраических уравнений методом Крамера.

Метод Крамера предназначен для решения тех систем линейных алгебраических уравнений (СЛАУ), у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Решение системы уравнений методом Крамера проходит за три шага простого алгоритма:

  1. Составить определитель матрицы системы (его называют также определителем системы), и убедиться, что он не равен нулю, т.е. $\Delta\neq 0$.
  2. Для каждой переменной $x_i$($i=\overline<1,n>$) необходимо составить определитель $\Delta_$, полученный из определителя $\Delta$ заменой i-го столбца столбцом свободных членов заданной СЛАУ.
  3. Найти значения неизвестных по формуле $x_i=\frac<\Delta_>><\Delta>$ ($i=\overline<1,n>$).

Перед переходом к чтению примеров рекомендую ознакомиться с правилами вычисления определителей второго и третьего порядка, изложенными здесь.

Матрица системы такова: $ A=\left( \begin 3 & 2\\ -1 & 5 \end \right)$. Определитель этой матрицы:

$$\Delta=\left| \begin 3 & 2\\ -1 & 5 \end\right|=3\cdot 5-2\cdot(-1)=17.$$

Как вычисляется определитель второго порядка можете глянуть здесь.

Так как определитель системы не равен нулю, то продолжаем решение методом Крамера. Вычислим значения двух определителей: $\Delta_$ и $\Delta_$. Определитель $\Delta_$ получаем из определителя $\Delta=\left| \begin 3 & 2\\ -1 & 5 \end\right|$ заменой первого столбца (именно этот столбец содержит коэффициенты при $x_1$) столбцом свободных членов $\left(\begin -11\\ 15\end\right)$:

Аналогично, заменяя второй столбец в $\Delta=\left|\begin3&2\\-1&5\end\right|$ столбцом свободных членов, получим:

Теперь можно найти значения неизвестных $x_1$ и $x_2$.

В принципе, можно ещё проверить, правильно ли решена система методом Крамера. Подставим в заданную СЛАУ $x_1=-5$, $x_2=2$:

Проверка пройдена, решение системы уравнений методом Крамера найдено верно. Осталось лишь записать ответ.

$$\Delta=\left| \begin 2 & 1 & -1\\ 3 & 2 & 2 \\ 1 & 0 & 1 \end\right|=4+2+2-3=5.$$

Как вычисляется определитель третьего порядка можете глянуть здесь.

Заменяя первый столбец в $\Delta$ столбцом свободных членов, получим $\Delta_$:

$$ \Delta_=\left| \begin 3 & 1 & -1\\ -7 & 2 & 2 \\ -2 & 0 & 1 \end\right|=6-4-4+7=5. $$

Заменяя второй столбец в $\Delta$ столбцом свободных членов, получим $\Delta_$:

$$ \Delta_=\left| \begin 2 & 3 & -1\\ 3 & -7 & 2 \\ 1 & -2 & 1 \end\right|=-14+6+6-7-9+8=-10. $$

Заменяя третий столбец в $\Delta$ столбцом свободных членов, получим $\Delta_$:

$$ \Delta_=\left| \begin 2 & 1 & 3\\ 3 & 2 & -7 \\ 1 & 0 & -2 \end\right|=-8-7-6+6=-15. $$

Учитывая все вышеизложенное, имеем:

Метод Крамера завершён. Можно проверить, верно ли решена система уравнений методом Крамера, подставив значения $x_1=1$, $x_2=-2$ и $x_3=-3$ в заданную СЛАУ:

Проверка пройдена, решение системы уравнений методом Крамера найдено верно.

Решить СЛАУ $\left\ <\begin& 2x_1+3x_2-x_3=15;\\ & -9x_1-2x_2+5x_3=-7. \end\right.$ используя метод Крамера.

Матрица системы $ \left( \begin 2 & 3 & -1\\ -9 & -2 & 5 \end \right) $ не является квадратной. Однако это вовсе не означает, что решение системы уравнений методом Крамера невозможно. Преобразуем заданную СЛАУ, перенеся переменную $x_3$ в правые части уравнений:

Теперь матрица системы $ \left( \begin 2 & 3 \\ -9 & -2 \end \right) $ стала квадратной, и определитель её $\Delta=\left| \begin 2 & 3\\ -9 & -2 \end\right|=-4+27=23$ не равен нулю. Применим метод Крамера аналогично предыдущим примерам:

Ответ можно записать в таком виде: $\left\ <\begin& x_1=\frac<13x_3-9><23>;\\ & x_2=\frac<-x_3+121><23>;\\ & x_3\in R. \end\right.$ Переменные $x_1$, $x_2$ – базисные (в иной терминологии – основные), а переменная $x_3$ – свободная (в иной терминологии – неосновная). Проверка, при необходимости, проводится так же, как и в предыдущих примерах.

Матрица системы $\left(\begin 1 & -5 & -1 & -2 & 3 \\ 2 & -6 & 1 & -4 & -2 \\ -1 & 4 & 5 & -3 & 0 \end\right)$ не является квадратной. Преобразуем заданную СЛАУ, перенеся переменные $x_4$, $x_5$ в правые части уравнений, и применим метод Крамера:

Естественно, что применение метода Крамера в случаях вроде того, что рассмотрен в примере №4, не всегда оправдано с точки зрения временных затрат. Мы ведь не можем гарантировать, что после переноса каких-либо переменных в правые части уравнений, определитель системы не будет равен нулю. А перебирать различные варианты – слишком долгий процесс. Гораздо удобнее в таком случае применить метод Гаусса. Я привёл пример №4 лишь с одной целью – показать, что метод Крамера применим вне зависимости от содержимого правых частей уравнений заданной СЛАУ (числа, переменные, функции – не имеет значения). Главное, чтобы определитель матрицы системы был отличен от нуля.

Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).

Метод Крамера для решения СЛАУ

В данной статье мы разберем, как найти неизвестные переменные по методу Крамера и опишем решение систем линейных уравнений.

Метод Крамера предназначен для того, чтобы решать системы линейных алгебраических уравнений (СЛАУ), в которых число неизвестных переменных равняется числу уравнений, а определитель основной матрицы не равен нулю.

Метод Крамера — вывод формул

Найти решение системы линейных уравнений вида:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋮ a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n

В этой системе x 1 , x 2 , . . . , x n — неизвестные переменные,

a i j , i = 1 , 2 , . . . , n ; j = 1 , 2 , . . . , n — числовые коэффициенты,

b 1 , b 2 , . . . , b n — свободные члены.

Решение такой системы линейных алгебраических уравнений — набор значений x 1 , x 2 , . . . , x n , при которых все уравнения системы становятся тождественными.

Матричный вид записи такой системы линейных уравнений:

A X = B , где A = a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n — основная матрица системы, в которой ее элементы — это коэффициенты при неизвестных переменных;

B = b 1 b 2 ⋮ b n — матрица-столбец свободных членов;

X = x 1 x 2 ⋮ x n — матрица-столбец неизвестных переменных.

После того как мы найдем неизвестные переменные x 1 , x 2 , . . . , x n , матрица X = x 1 x 2 ⋮ x n становится решением системы уравнений, а равенство A X = B обращается в тождество.

Метод Крамера основан на 2-х свойствах определителя матрицы:

  • Определитель квадратной матрицы A = a i j , i = 1 , 2 , . . . , n ; j = 1 , 2 , . . . , n равняется сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения:

a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n = a p 1 × A p 1 + a p 2 × A p 2 + . . . + a p n × A p n = a 1 q × A 1 q + a 2 q × A 2 q + . . . + a n q × A n q

  • Сумма произведений какой-либо строки (столбца) квадратной матрицы на алгебраические дополнения соответствующие элементы другой матрицы равняется нулю:

a p 1 × A p 1 + a p 2 × A p 2 + . . . + a p n × A p n = 0 a 1 q × A 1 q + a 2 q × A 2 q + . . . + a n q × A n q = 0

p = 1 , 2 , . . . , n , q = 1 , 2 , . . . , n p не равно q

Приступаем к нахождению неизвестной переменной x 1 :

  • Умножаем обе части первого уравнения системы на А 11 , обе части второго уравнения на А 21 и т.д. Таким образом, мы умножаем уравнения системы на соответствующие алгебраические дополнения 1-го столбца матрицы А :

A 11 a 11 x 1 + A 11 a 12 x 2 + . . . + A 11 a 1 n x n = A 11 b 1 A 21 a 21 x 1 + A 21 a 22 x 2 + . . . + A 21 x 2 n x n = A 21 b 2 ⋯ A n 1 a n 1 x 1 + A n 1 a n 2 x 2 + . . . + A n 1 a n n x n = A n 1 b n

  • Складываем все левые части уравнения системы, сгруппировав слагаемые при неизвестных переменных , и приравниваем получившуюся сумму к сумме всех правых частей уравнения:

x 1 ( A 11 a 11 + A 21 a 21 + . . . + A n 1 a n 1 ) + + x 2 ( A 11 a 12 + A 21 a 22 + . . . + A n 1 a n 2 ) + + . . . + + x n ( A 11 a 1 n + A 21 a 2 n + . . . + A n 1 a n n ) = = A 11 b 1 + A 21 b 2 + . . . + A n 1 b n

Если воспользоваться свойствами определителя, то получится:

А 11 а 11 + А 21 а 21 + . . . + А n 1 a n 1 = А А 11 а 12 + А 21 а 22 + . . . + А n 1 а n 2 = 0 ⋮ A 11 a 1 n + A 21 a 2 n + . . . + A n 1 a n n = 0

A 11 b 1 + A 21 b 2 + . . . + A n 1 b n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n

Предыдущее равенство будет иметь следующий вид:

x 1 A = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n .

x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n A

Таким же образом находим все оставшиеся неизвестные переменные.

∆ = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n , ∆ x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n ,

∆ x 2 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n , . ∆ x n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n .

то получаются формулы для нахождения неизвестных переменных по методу Крамера:

x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆ , . . . , x n = ∆ x n ∆ .

Алгоритм решения СЛАУ методом Крамера

  • Необходимо вычислить определитель матрицы системы и убедиться, что он не равен нулю.
  • Найти определители

∆ x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n

∆ x 2 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n

∆ x n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n

Эти определители являются определителями матриц, которые получены из матрицы А путем замены k -столбца на столбец свободных членов.

  • Вычислить неизвестные переменные при помощи формул:

x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆ , . . . , x n = ∆ x n ∆ .

  • Выполнить проверку результатов: если все определители являются тождествами, то решение найдено верно.

Примеры решения СЛАУ методом Крамера

Найти решение неоднородной системы линейных уравнений методом Крамера:

3 x 1 — 2 x 2 = 5 6 2 x 1 + 3 x 2 = 2

Основная матрица представлена в виде 3 — 2 2 3 .

Мы можем вычислить ее определитель по формуле:

a 11 a 12 a 21 a 22 = a 11 × a 22 — a 12 × a 21 : ∆ = 3 — 2 2 3 = 3 × 3 — ( — 2 ) × 2 = 9 + 4 = 13

Записываем определители ∆ x 1 и ∆ x 2 . Заменяем 1-ый столбец основной матрицы на столбец свободных членов и получаем определитель ∆ x 1 = 5 6 — 2 2 3

По аналогии заменяем второй столбец основной матрицы на столбец свободных членов и получаем определитель:

Находим эти определители:

∆ x 1 = 5 6 — 2 2 3 = 5 6 × 3 — 2 ( — 2 ) = 5 2 + 4 = 13 2

∆ x 2 = 3 5 6 2 2 = 3 × 2 — 5 6 × 2 = 6 — 5 3 = 13 3

Находим неизвестные переменные по следующим формулам

x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆

x 1 = ∆ x 1 ∆ = 13 2 13 = 1 2

x 2 = ∆ x 2 ∆ = 3 13 = 1 3

Выполняем проверку — подставляем полученные значения переменных в в исходную систему уравнений:

3 1 2 — 2 1 3 = 5 6 2 1 2 + 3 1 3 = 2 ⇔ 5 6 = 5 6 2 = 2

Оба уравнения превращаются в тождества, поэтому решение верное.

Ответ: x 1 = 1 2 , x 2 = 1 3

Поскольку некоторые элементы системы линейных уравнений могут равняться нулю, то в системе не будет соответствующих неизвестных переменных.

Найти решение 3-х нелинейных уравнений методом Крамера с 3-мя неизвестными:

2 y + x + z = — 1 — z — y + 3 x = — 1 — 2 x + 3 z + 2 y = 5

За основную матрицу нельзя брать 2 1 1 — 1 — 1 — 3 — 2 3 2 .

Необходимо привести к общему порядку все неизвестные переменные во всех уравнениях системы:

x + 2 y + z = — 1 3 x — y — z = — 1 — 2 x + 2 y + 3 z = 5

С этого момента основную матрицу хорошо видно:

1 2 1 3 — 1 — 1 — 2 2 3

Вычисляем ее определитель:

∆ = 1 2 1 3 — 1 — 1 — 2 2 3 = 1 × ( — 1 ) × 3 + 2 × ( — 1 ) ( — 2 ) + 1 × 2 × 3 — 1 ( — 1 ) ( — 2 ) — 2 × 3 × 3 — — 1 ( — 1 ) × 2 = — 11

Записываем определители и вычисляем их:

∆ x = — 1 2 1 — 1 — 1 — 1 5 2 3 = ( — 1 ) ( — 1 ) × 3 + 2 ( — 1 ) × 5 + 1 ( — 1 ) × 2 — 1 ( — 1 ) × 5 — 2 ( — 1 ) × 3 — — 1 ( — 1 ) × 2 = 0

∆ y = 1 — 1 1 3 — 1 — 1 — 2 5 3 = 1 ( — 1 ) × 3 + ( — 1 ) ( — 1 ) ( — 2 ) + 1 × 3 × 5 — 1 ( — 1 ) ( — 2 ) — ( — 1 ) — — 1 ( — 1 ) × 2 = 22

∆ z = 1 2 — 1 3 — 1 — 1 — 2 2 5 = 1 ( — 1 ) × 5 + 2 ( — 1 ) ( — 2 ) + ( — 1 ) × 3 × 2 — ( — 1 ) ( — 1 ) ( — 2 ) — 2 × 3 × 5 — — 1 ( — 1 ) × 2 = — 33

Находим неизвестные переменные по формулам:

x = ∆ x ∆ , y = ∆ y ∆ , z = ∆ z ∆ .

x = ∆ x ∆ = 0 — 11 = 0

y = ∆ y ∆ = 22 — 11 = — 2

z = ∆ z ∆ = — 33 — 11 = 3

Выполняем проверку — умножаем основную матрицу на полученное решение 0 — 2 3 :

1 2 1 3 — 1 — 1 — 2 2 3 × 0 — 2 3 = 1 × 0 + 2 ( — 2 ) + 1 × 3 3 × 0 + ( — 1 ) ( — 2 ) + ( — 1 ) × 3 ( — 2 ) × 0 + 2 ( — 2 ) + 3 × 3 = — 1 — 1 5

Результатом являются столбцы свободных членов исходной системы уравнений, следовательно, решение верное.

Ответ: x = 0 , y = — 2 , z = 3

Пример решения методом Крамера

Решение находим с помощью калькулятора. Запишем систему в виде:

B T = (20,11,40,37)
Найдем главный определитель:
Минор для (1,1):

Найдем определитель для этого минора.
1,1 = 3∙(9∙2-9∙9)-10∙(2∙2-9∙1)+8∙(2∙9-9∙1)= -67
Минор для (2,1):

4,1 = 5∙(2∙9-9∙1)-3∙(4∙9-9∙1)+10∙(4∙1-2∙1)= -16
Главный определитель:
∆ = 2∙(-67)-1∙(-89)+2∙(-6)-3∙(-16) = -9
Заменим 1-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
Минор для (1,1):

Заменим 2-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
Минор для (1,1):

Заменим 3-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
Минор для (1,1):

Заменим 4-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
Минор для (1,1):

Выпишем отдельно найденные переменные Х:

Пример №2 . Решение находим с помощью калькулятора. Запишем систему в виде:

A =
123
456
780

B T = (6,9,-6)
Главный определитель:
∆ = 1 • (5 • 0-8 • 6)-4 • (2 • 0-8 • 3)+7 • (2 • 6-5 • 3) = 27 = 27
Заменим 1-ый столбец матрицы А на вектор результата В.

1 =
623
956
-680

Найдем определитель полученной матрицы.
1 = 6 • (5 • 0-8 • 6)-9 • (2 • 0-8 • 3)+(-6 • (2 • 6-5 • 3)) = -54
x1 = -54/27 = -2
Заменим 2-ый столбец матрицы А на вектор результата В.

2 =
163
496
7-60

Найдем определитель полученной матрицы.
2 = 1 • (9 • 0-(-6 • 6))-4 • (6 • 0-(-6 • 3))+7 • (6 • 6-9 • 3) = 27
x2 = 27/27 = 1
Заменим 3-ый столбец матрицы А на вектор результата В.

3 =
126
459
78-6

Найдем определитель полученной матрицы.
3 = 1 • (5 • (-6)-8 • 9)-4 • (2 • (-6)-8 • 6)+7 • (2 • 9-5 • 6) = 54
x3 = 54/27 = 2
Выпишем отдельно найденные переменные Х
x1 = -54/27 = -2
x2 = 27/27 = 1
x3 = 54/27 = 2
Проверка.
1•-2+2•1+3•2 = 6
4•-2+5•1+6•2 = 9
7•-2+8•1+0•2 = -6

Пример №2 . Запишем систему в виде:

A =
2-112-5
1-1-50
3-2-2-5
7-5-9-1

B T = (1,0,3,-4)
Найдем главный определитель:
Минор для (1,1):

1,1 =
-1-50
-2-2-5
-5-9-1

Найдем определитель для этого минора.
1,1 = -1 • (-2 • (-1)-(-9 • (-5)))-(-2 • (-5 • (-1)-(-9 • 0)))+(-5 • (-5 • (-5)-(-2 • 0))) = -72
Минор для (2,1):

2,1 =
-112-5
-2-2-5
-5-9-1

2,1 = -1 • (-2 • (-1)-(-9 • (-5)))-(-2 • (12 • (-1)-(-9 • (-5))))+(-5 • (12 • (-5)-(-2 • (-5)))) = 279
Минор для (3,1):

3,1 =
-112-5
-1-50
-5-9-1

3,1 = -1 • (-5 • (-1)-(-9 • 0))-(-1 • (12 • (-1)-(-9 • (-5))))+(-5 • (12 • 0-(-5 • (-5)))) = 63
Минор для (4,1):

4,1 =
-112-5
-1-50
-2-2-5

4,1 = -1 • (-5 • (-5)-(-2 • 0))-(-1 • (12 • (-5)-(-2 • (-5))))+(-2 • (12 • 0-(-5 • (-5)))) = -45
Главный определитель:
∆ = 2 • (-72)-1 • 279+3 • 63-7 • (-45) = 81
Заменим 1-ый столбец матрицы А на вектор результата В.

1 =
1-112-5
0-1-50
3-2-2-5
-4-5-9-1

Минор для (1,1):

1,1 =
-1-50
-2-2-5
-5-9-1

1,1 = -1 • (-2 • (-1)-(-9 • (-5)))-(-2 • (-5 • (-1)-(-9 • 0)))+(-5 • (-5 • (-5)-(-2 • 0))) = -72
Минор для (2,1):

2,1 =
-112-5
-2-2-5
-5-9-1

2,1 = -1 • (-2 • (-1)-(-9 • (-5)))-(-2 • (12 • (-1)-(-9 • (-5))))+(-5 • (12 • (-5)-(-2 • (-5)))) = 279
Минор для (3,1):

3,1 =
-112-5
-1-50
-5-9-1

3,1 = -1 • (-5 • (-1)-(-9 • 0))-(-1 • (12 • (-1)-(-9 • (-5))))+(-5 • (12 • 0-(-5 • (-5)))) = 63
Минор для (4,1):

4,1 =
-112-5
-1-50
-2-2-5

4,1 = -1 • (-5 • (-5)-(-2 • 0))-(-1 • (12 • (-5)-(-2 • (-5))))+(-2 • (12 • 0-(-5 • (-5)))) = -45
Определитель минора:
1 = 1 • (-72)-0 • 279+3 • 63-(-4 • (-45))
x1 = -63/81 = -0.78
Заменим 2-ый столбец матрицы А на вектор результата В.

2 =
2112-5
10-50
33-2-5
7-4-9-1

Минор для (1,1):

1,1 =
0-50
3-2-5
-4-9-1

1,1 = 0 • (-2 • (-1)-(-9 • (-5)))-3 • (-5 • (-1)-(-9 • 0))+(-4 • (-5 • (-5)-(-2 • 0))) = -115
Минор для (2,1):

2,1 =
112-5
3-2-5
-4-9-1

2,1 = 1 • (-2 • (-1)-(-9 • (-5)))-3 • (12 • (-1)-(-9 • (-5)))+(-4 • (12 • (-5)-(-2 • (-5)))) = 408
Минор для (3,1):

3,1 =
112-5
0-50
-4-9-1

3,1 = 1 • (-5 • (-1)-(-9 • 0))-0 • (12 • (-1)-(-9 • (-5)))+(-4 • (12 • 0-(-5 • (-5)))) = 105
Минор для (4,1):

4,1 =
112-5
0-50
3-2-5

4,1 = 1 • (-5 • (-5)-(-2 • 0))-0 • (12 • (-5)-(-2 • (-5)))+3 • (12 • 0-(-5 • (-5))) = -50
Определитель минора:
2 = 2 • (-115)-1 • 408+3 • 105-7 • (-50)
x2 = 27/81 = 0.33
Заменим 3-ый столбец матрицы А на вектор результата В.

3 =
2-11-5
1-100
3-23-5
7-5-4-1

Минор для (1,1):

1,1 =
-100
-23-5
-5-4-1

Найдем определитель для этого минора.
1,1 = -1 • (3 • (-1)-(-4 • (-5)))-(-2 • (0 • (-1)-(-4 • 0)))+(-5 • (0 • (-5)-3 • 0)) = 23
Минор для (2,1):

2,1 =
-11-5
-23-5
-5-4-1

2,1 = -1 • (3 • (-1)-(-4 • (-5)))-(-2 • (1 • (-1)-(-4 • (-5))))+(-5 • (1 • (-5)-3 • (-5))) = -69
Минор для (3,1):

3,1 =
-11-5
-100
-5-4-1

3,1 = -1 • (0 • (-1)-(-4 • 0))-(-1 • (1 • (-1)-(-4 • (-5))))+(-5 • (1 • 0-0 • (-5))) = -21
Минор для (4,1):

4,1 =
-11-5
-100
-23-5

4,1 = -1 • (0 • (-5)-3 • 0)-(-1 • (1 • (-5)-3 • (-5)))+(-2 • (1 • 0-0 • (-5))) = 10
Определитель минора:
3 = 2 • 23-1 • (-69)+3 • (-21)-7 • 10
x3 = -18/81 = -0.22
Заменим 4-ый столбец матрицы А на вектор результата В.

4 =
2-1121
1-1-50
3-2-23
7-5-9-4

Минор для (1,1):

1,1 =
-1-50
-2-23
-5-9-4

1,1 = -1 • (-2 • (-4)-(-9 • 3))-(-2 • (-5 • (-4)-(-9 • 0)))+(-5 • (-5 • 3-(-2 • 0))) = 80
Минор для (2,1):

2,1 =
-1121
-2-23
-5-9-4

2,1 = -1 • (-2 • (-4)-(-9 • 3))-(-2 • (12 • (-4)-(-9 • 1)))+(-5 • (12 • 3-(-2 • 1))) = -303
Минор для (3,1):

3,1 =
-1121
-1-50
-5-9-4

3,1 = -1 • (-5 • (-4)-(-9 • 0))-(-1 • (12 • (-4)-(-9 • 1)))+(-5 • (12 • 0-(-5 • 1))) = -84
Минор для (4,1):

4,1 =
-1121
-1-50
-2-23

4,1 = -1 • (-5 • 3-(-2 • 0))-(-1 • (12 • 3-(-2 • 1)))+(-2 • (12 • 0-(-5 • 1))) = 43
Определитель минора:
4 = 2 • 80-1 • (-303)+3 • (-84)-7 • 43
x4 = -90/81 = -1.11
Выпишем отдельно найденные переменные Х
x1 = -63/81 = -0.78
x2 = 27/81 = 0.33
x3 = -18/81 = -0.22
x4 = -90/81 = -1.11
Проверка.
2•-0.78+-1•0.33+12•-0.22+-5•-1.11 = 1
1•-0.78+-1•0.33+-5•-0.22+0•-1.11 = 0
3•-0.78+-2•0.33+-2•-0.22+-5•-1.11 = 3
7•-0.78+-5•0.33+-9•-0.22+-1•-1.11 = -4

Пример №3 . Запишем систему в виде:

A =
21-1
1-22
311

B T = (-1,-3,-8)
Главный определитель:
∆ = 2 • (-2 • 1-1 • 2)-1 • (1 • 1-1 • (-1))+3 • (1 • 2-(-2 • (-1))) = -10 = -10
Заменим 1-ый столбец матрицы А на вектор результата В.

1 =
-11-1
-3-22
-811

1 = -1 • (-2 • 1-1 • 2)-(-3 • (1 • 1-1 • (-1)))+(-8 • (1 • 2-(-2 • (-1)))) = 10
x1 = 10/-10 = -1
Заменим 2-ый столбец матрицы А на вектор результата В.

2 =
2-1-1
1-32
3-81

2 = 2 • (-3 • 1-(-8 • 2))-1 • (-1 • 1-(-8 • (-1)))+3 • (-1 • 2-(-3 • (-1))) = 20
x2 = 20/-10 = -2
Заменим 3-ый столбец матрицы А на вектор результата В.

3 =
21-1
1-2-3
31-8

3 = 2 • (-2 • (-8)-1 • (-3))-1 • (1 • (-8)-1 • (-1))+3 • (1 • (-3)-(-2 • (-1))) = 30
x3 = 30/-10 = -3
Выпишем отдельно найденные переменные Х
x1 = 10/-10 = -1
x2 = 20/-10 = -2
x3 = 30/(-10) = -3
Проверка.
2•-1+1•-2+-1•-3 = -1
1•-1+-2•-2+2•-3 = -3
3•-1+1•-2+1•-3 = -8

Пример №4 . Запишем систему в виде:

A =
1-11
43-2
2-15

B T = (0,-4,11)
Главный определитель:
∆ = 1 • (3 • 5-(-1 • (-2)))-4 • (-1 • 5-(-1 • 1))+2 • (-1 • (-2)-3 • 1) = 27 = 27
Заменим 1-ый столбец матрицы А на вектор результата В.

1 =
0-11
-43-2
11-15

1 = 0 • (3 • 5-(-1 • (-2)))-(-4 • (-1 • 5-(-1 • 1)))+11 • (-1 • (-2)-3 • 1) = -27
x1 = -27/27 = -1
Заменим 2-ый столбец матрицы А на вектор результата В.

2 =
101
4-4-2
2115

2 = 1 • (-4 • 5-11 • (-2))-4 • (0 • 5-11 • 1)+2 • (0 • (-2)-(-4 • 1)) = 54
x2 = 54/27 = 2
Заменим 3-ый столбец матрицы А на вектор результата В.

3 =
1-10
43-4
2-111

3 = 1 • (3 • 11-(-1 • (-4)))-4 • (-1 • 11-(-1 • 0))+2 • (-1 • (-4)-3 • 0) = 81
x3 = 81/27 = 3
Выпишем отдельно найденные переменные Х
x1 = -27/27 = -1
x2 = 54/27 = 2
x3 = 81/27 = 3
Проверка.
1•-1+-1•2+1•3 = 0
4•-1+3•2+-2•3 = -4
2•-1+-1•2+5•3 = 11

Пример №5 . Запишем матрицу в виде:

A =
122
2-21
31-1

Главный определитель:
∆ = 1 • (-2 • (-1)-1 • 1)-2 • (2 • (-1)-1 • 2)+3 • (2 • 1-(-2 • 2)) = 27

Пример №6 . При решении системы линейных уравнений с квадратной матрицей коэффициентов А можно применять формулы Крамера, если:

  • столбцы матрицы А линейно независимы;
  • определитель матрицы А не равен нулю;

Пример №7 . Дана система трех линейных уравнений с тремя неизвестными. Найти ее решение с помощью формул Крамера. Выполнить проверку полученного решения.
-75x 1 + 35 x 2 + 25 x 3 = -4,5
25x 1 — 70x 2 + 25 x 3 = -20
15x 1 + 10x 2 — 5 5 x 3 = -30

  • Решение
  • Видеоинструкция

Решение получаем через калькулятор. Запишем систему в виде:

B T = (-4.5,-20,-30)
Главный определитель:
∆ = -75∙(-70∙(-55)-10∙25)-25∙(35∙(-55)-10∙25)+15∙(35∙25-(-70∙25))= -176250 = -176250
Заменим 1-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
1 = -4.5∙(-70∙(-55)-10∙25)-(-20∙(35∙(-55)-10∙25))+(-30∙(35∙25-(-70∙25)))= -138450

Заменим 2-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
2 = -75∙(-20∙(-55)-(-30∙25))-25∙(-4.5∙(-55)-(-30∙25))+15∙(-4.5∙25-(-20∙25))= -157875

Заменим 3-ый столбец матрицы А на вектор результата В .

Выпишем отдельно найденные переменные Х


источники:

http://zaochnik.com/spravochnik/matematika/issledovanie-slau/metod-kramera/

http://math.semestr.ru/kramer/prim1.php