Задачи на составление уравнения сводящегося к квадратному

Решение задач с помощью квадратных уравнений

Алгоритм решения текстовых задач с помощью квадратных уравнений

Шаг 1. Проанализировать условие задачи, обозначить одно из неизвестных буквой (переменной). Если это удобно, обозначить все неизвестные разными буквами и выбрать «основную» переменную.

Шаг 2. Выразить другие неизвестные через основную переменную.

Шаг 3. Записать уравнение.

Шаг 4. Решить полученное уравнение.

Шаг 5. Истолковать результат в соответствии с условием задачи.

Найдите периметр прямоугольника, длина которого на 5 см больше ширины, а площадь равна 165 см2.

Шаг 1. Пусть x – ширина прямоугольника (в см).

Шаг 2. Тогда его длина (x+5), и площадь: S = x(x+5)

Шаг 3. По условию получаем уравнение: x(x+5) = 165

$$ x^2+5x-165 = 0 \Rightarrow (x+16)(x-11) = 0 \Rightarrow \left[ \begin x_1 = -16 \\ x_2 = 11 \end \right. $$

Шаг 5. Для ширины прямоугольника выбираем положительный корень x = 11.

Тогда длина x+5 = 16. Периметр: P = 2(11+16) = 54 (см).

Примеры

Пример 1. Найдите два числа, если их сумма равна 36, а произведение 315.

Пусть $x_1$ и $x_2$ — искомые числа.

Известно, что $x_1+x_2 = 36, x_1 x_2 = 315$.

По теореме Виета данные два числа являются корнями уравнения

$$ x^2+bx+c = 0, b = -(x_1+x_2 ) = -36, c = x_1 x_2 = 315$$

$$ D = 36^2-4 \cdot 315 = 1296-1260 = 36 = 6^2 $$

$$ x = \frac<36 \pm 6> <2>= \left[ \begin x_1 = 15 \\ x_2 = 21 \end \right. $$

Пример 2. Найдите два числа, если их разность равна 9, а произведение 162.

Пусть x и y — искомые числа. Пусть $x \gt y$.

По условию $x-y = 9 \Rightarrow y = x-9. $

Произведение xy = x(x-9) = 162

$$ D = 9^2-4 \cdot (-162) = 81+648 = 729 = 27^2 $$

$$ x = \frac<9 \pm 27> <2>= \left[ \begin x_1 = -9 \\ x_2 = 18 \end \right. $$

Получаем две пары чисел: $ \left[ \begin <\left\< \begin x_1 = -9 \\ y_1=-9-9=-18 \end \right.> \\ <\left\< \begin x_2 = 18 \\ y_2 = 18-9=9 \end \right.> \end \right. $

Ответ: -9 и-18; или 18 и 9

Пример 3. Задача из «Арифметики» Магницкого (1703 год)

Найдите число, зная, что прибавив к его квадрату 108, получим число в 24 раза больше данного.

Пусть x — искомое число.

По условию $x^2+108 = 24x$

$$ x^2-24x+108 = 0 \Rightarrow (x-6)(x-18) = 0 \Rightarrow \left[ \begin x_1 = 6 \\ x_2 = 18 \end \right. $$

Пример 4. Найдите три последовательных целых числа, сумма квадратов которых равна 590.

Пусть n-1,n,n+1 — данные три числа.

$$ 3n^2 = 588 \Rightarrow n^2 = 196 \Rightarrow n = \pm \sqrt <196>= \pm 13 $$

Получаем две последовательности: -14,-13,-12 или 12,13,14

Ответ: -14,-13,-12 или 12,13,14

Пример 5. Из пункта А в пункт В, расстояние между которыми 700 км, выехал автобус. Из-за непогоды водитель уменьшил обычную скорость на 10 км/ч, и автобус ехал на 1 час 40 минут дольше. Сколько часов автобус обычно тратит на дорогу?

Решение текстовых задач на составление квадратных уравнений

Решение текстовых задач на составление квадратных уравнений.

Цель: актуализировать умения и навыки решения текстовых задач алгебраическим методом: составлять уравнение по условию задачи и решать его.

При решении текстовых задач алгебраическим методом основное внимание следует уделять процессу перевода условия задачи на математический язык. Напомним еще раз учащимся основные этапы решения текстовой задачи алгебраическим методом:

1-й э т а п. Анализ условия задачи и введение переменной.

2-й э т а п. Перевод условия задачи на математический язык (составление уравнения).

3-й э т а п. Решение полученного уравнения.

4-й э т а п. Интерпретация полученного результата.

Самым важным и сложным для учащихся являются первые два этапа. Чтобы преодолеть эти трудности, необходима наглядность в представлении условия. С этой целью напоминаем, что данные условия можно заносить в таблицы, составлять схемы, графы.

Также следует уделить внимание 4-му этапу. Учащиеся должны понимать, какие результаты удовлетворяют условию задачи, а какие нет (определение правдоподобности).

2. Текстовые задач и можно условно разбить на группы по типу уравнения:

а) сводящиеся к линейному уравнению;

б) сводящиеся к квадратному уравнению;

в) сводящиеся к дробно-рациональному уравнению.

Также задачи можно классифицировать по фабуле:

а) задачи «на движение»;

б) задачи «на работу»;

в) задачи «на проценты и концентрацию».

1.Расстояние между городами скорый поезд, идущий со скоростью 90 км/ч, проходит на 1,5 ч быстрее товарного, который идет со скоростью 60 км/ч. Каково расстояние между городами? (х/60 — х/90 = 3/2)

2.Ученику и мастеру дано задание изготовить одинаковое количество деталей. Мастер, изготовляя 18 деталей в час, затратил на выполнение задания на 3 ч меньше, чем ученик, который изготавливал лишь 12 деталей в час. Сколько деталей было заказано? (х/12 – х/18 = 3)

3.Знаменатель дроби на 2 больше числителя. Если числитель увеличить на 15, а знаменатель – на 3, то получится число . Найдите дробь. (30/32).

4. Автобус-экспресс отправился от вокзала в аэропорт, находящийся на расстоянии 60км от вокзала. Пассажир, опоздавший на 5 минут на автобус, решил добраться до аэропорта на такси. Скорость такси на 10км/ч больше скорости автобуса. С какой скорость ехал автобус, если он приехал в аэропорт одновременно с такси?

Задачи, приводящиеся к квадратным уравнениям

Вы будете перенаправлены на Автор24

Общая теория решения задач при помощи уравнений

Перед тем, как перейти к конкретным видам задач приведем сначала общую теорию для разрешения различных задач с помощью уравнений. Прежде всего к уравнениям сводят задачи в таких дисциплинах как экономика, геометрия, физика и многих других. Общий порядок для решения задач при помощи уравнений заключается в следующем:

  • Все искомые нами величины из условия задачи, а также какие либо вспомогательные обозначаются удобными для нас переменными. Чаще всего этими переменными выступают последние буквы латинского алфавита.
  • Используя данные в задачи числовые значения, а также словесные соотношения составляется одно или несколько уравнений (в зависимости от условия задачи).
  • Разрешают полученное уравнение или их систему и выкидывают «не логичные» решения. К примеру, если надо найти площадь, то отрицательное число, очевидно, будет посторонним корнем.
  • Получаем окончательный ответ.

Далее будем рассматривать конкретные задачи, уравнения для которых получаются квадратными.

Пример задачи в алгебре

Здесь мы приведем пример задачи, сводящейся к квадратному уравнению без опоры на какую-либо конкретную область.

Найдите два таких иррациональных числа при сложении квадратов которых будет получаться пятерка, а при их обычном сложении друг с другом тройка.

Обозначим эти числа буквами $x$ и $y$. По условию задачи довольно легко составить два уравнения $x^2+y^2=5$ и $x+y=3$. Видим, что одно из них является квадратным. Для нахождения решения нужно решить систему:

Вначале выражаем из второго $x$

Подставляя в первое и производим элементарные преобразования

Мы перешли к решению квадратного уравнения. Сделаем это с помощью формул. Найдем дискриминант:

Найдем вторую переменную.

Для первого корня:

Для второго корня:

Так как последовательность чисел нам не важна получаем одну пару чисел.

Готовые работы на аналогичную тему

Пример задачи в физике

Рассмотрим пример задачи, приводящейся к решению квадратного уравнения в физике.

Вертолет, летящий равномерно в безветренную погоду имеет скорость $250$ км/ч. Ему необходимо со своей базы долететь до места пожара, которое находится в $70$ км от нее и вернуться обратно. В это время ветер дул в сторону базы, замедляя движение вертолета к лесу. Из-за чего обратно до базы он добирался на 1 час раньше. Найдите скорость ветра.

Обозначим скорость ветра через $v$. Тогда мы получим, что в сторону леса вертолет будет лететь с реальной скоростью, равной $250-v$, а обратно его реальная скорость будет составлять $250+v$. Посчитаем время на путь туда и на путь обратно.

Так как обратно до базы вертолет добирался на $1$ час раньше, будем иметь

Приведем левую часть к общему знаменателю, применим правило пропорции и произведем элементарные преобразования:

Получили квадратное уравнение, для решения данной задачи. Решим его.

Будем решать его с помощью дискриминанта:

Уравнение имеет два корня:

Так как мы искали скорость (которая не может быть отрицательна), очевидно, что первый корень лишний.

Пример задачи в геометрии

Рассмотрим пример задачи, приводящейся к решению квадратного уравнения в геометрии.

Найдите площадь прямоугольного треугольника, который удовлетворяет следующим условиям: его гипотенуза равняется $25$, а катеты по длине относятся как $4$ к $3$.

Для того, чтобы найти искомую площадь нам нужно найти катеты. Отметим одну часть катета через $x$. Тогда выражая через эту переменную катеты получим что их длины равняются $4x$ и $3x$. Таким образом, из теоремы Пифагора мы можем составить следующее квадратное уравнение:

(корень $x=-5$ можно не рассматривать, так как катет не может быть отрицателен)

Получили, что катеты равны $20$ и $15$ соответственно, то ест площадь

$S=\frac<1><2>\cdot 20\cdot 15=150$

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 24 06 2021


источники:

http://pandia.ru/text/80/359/85548.php

http://spravochnick.ru/matematika/kvadratnye_uravneniya_i_ih_korni_sistemy_nelineynyh_uravneniy/zadachi_privodyaschiesya_k_kvadratnym_uravneniyam/