Задачи на уравнение эйнштейна для внешнего фотоэффекта

Примеры решенных задач по физике на тему «Фотоэффект»

Ниже размещены условия задач и отсканированные решения. Если вам нужно решить задачу на эту тему, вы можете найти здесь похожее условие и решить свою по аналогии. Загрузка страницы может занять некоторое время в связи с большим количеством рисунков. Если Вам понадобится решение задач или онлайн помощь по физике- обращайтесь, будем рады помочь.

Явление фотоэффекта заключается в испускании веществом электронов под действием падающего света. Теория фотоэффекта разработана Эйнштейном и заключается в том, что поток света представляет собой поток отдельных квантов(фотонов) с энергией каждого фотона h n . При попадании фотонов на поверхность вещества часть из них передает свою энергию электронов. Если этой энергия больше работы выхода из вещества, электрон покидает металл. Уравнение эйнштейна для фотоэффекта: где — максимальная кинетическая энергия фотоэлектрона.

Длина волны красной границы фотоэффекта для некоторого металла составляет 307 нм. Максимальная кинетическая энергия фотоэлектронов – 1 эВ. Найти отношение работы выхода электрона к энергии падающего фотона.

Частота света красной границы фотоэффекта для некоторого металла составляет 6*10 14 Гц, задерживающая разность потенциалов для фотоэлектронов – 2В. Определить частоту падающего света и работу выхода электронов.

Работа выхода электрона из металла составляет 4,28эВ. Найти граничную длину волны фотоэффекта.

На медный шарик радает монохроматический свет с длиной волны 0,165 мкм. До какого потенциала зарядится шарик, если работа выхода электрона для меди 4,5 эВ?

Работа выхода электрона из калия составляет 2,2эВ, для серебра 4,7эВ. Найти граничные длину волны фотоэффекта.

Длина волны радающего света 0,165 мкм, задерживающая разность потенциалов для фотоэлектронов 3В. Какова работа выхода электронов?

Красная граница фотоэффекта для цинка 310 нм. Определить максимальную кинетическую энергию фотоэлектронов, если на цинк падает свет с длиной волны 200нм.

На металл с работой выхода 2,4эВ падает свет с длиной волны 200нм. Определить задерживающую разность потенциалов.

На металл падает свет с длиной волны 0,25 мкм, задерживающая разность потенциалов при этом 0,96В. Определить работу выхода электронов из металла.

При изменении длины волны падающего света максимальные скорости фотоэлектронов изменились в 3/4 раза. Первоначальная длина волны 600нм, красная граница фотоэффекта 700нм. Определить длину волны после изменения.

Работы выхода электронов для двух металлов отличаются в 2 раза, задерживающие разности потенциалов — на 3В. Определить работы выхода.

Максимальная скорость фотоэлектронов равно 2,8*10 8 м/с. Определить энергию фотона.

Энергии падающих на металл фотонов равны 1,27 МэВ. Найти максимальную скорость фотоэлектронов.

Максимальная скорость фотоэлектронов равно 0,98с, где с — скорость света в вакууме. Найти длину волны падающего света.

Энергия фотона в пучке света, падающего на поверхность металла, равно 1,53 МэВ. Определить максимальную скорость фотоэлектронов.

На шарик из металла падает свет с длиной волны 0,4 мкм, при этом шапик заряжается до потенциала 2В. До какого потенциала зарядится шарик, если длина волны станет равной 0,3 мкм?

После изменения длины волны падающего света в 1,5 раза задерживающая разность потенциалов изменилась с 1,6В до 3В. Какова работа выхода?

Красная граница фотоэффекта 560нм, частота падающего света 7,3*10 14 Гц. Найти максимальную скорость фотоэлектронов.

Красная граница фотоэффекта 2800 ангстрем, длина волны падающего света 1600 ангстрем. Найти работу выхода и максимальную кинетическую энергию фотоэлектрона.

Задерживащая разность потенциалов 1,5В, работа выхода электронов 6,4*10 -19 Дж. Найти длину волны падающего света и красную границу фотоэффекта.

Работа выхода электронов из металла равна 3,3 эВ. Во сколько раз изменилась кинетическая энергия фотоэлектронов. если длина волны падающего света изменилась с 2,5*10 -7 м до 1,25*10 -7 м?

Найти максимальную скорость фотоэлектронов для видимого света с энергией фотона 8 эВ и гамма излучения с энергией 0,51 МэВ. Работа выхода электронов из металла 4,7 эВ.

Фототок прекращается при задерживающей разности потенциалов 3,7 В. Работа выхода электронов равна 6,3 эВ. Какая работа выхода электронов у другого металла, если там фототок прекращается при разности потенциалов, большей на 2,3В.

Работа выхода электронов из металла 4,5 эВ, энергия падающих фотонов 4,9 эВ. Чему равен максимальный импульс фотоэлектронов?

Красная граница фотоэффекта 2900 ангстрем, максимальная скорость фотоэлектронов 10 8 м/с. Найти отношение работы выхода электронов к энергии палающих фотонов.

Длина волны падающего света 400нм, красная граница фотоэффекта равна 400нм. Чему равна максимальная скорость фотоэлектронов?

Длина волны падающего света 300нм, работа выхода электронов 3,74 эВ. Напряженность задерживающего электростатического поля 10 В/см.Какой максимальный путь фотоэлектронов при движении в направлении задерживающего поля?

Длина волны падающего света 100 нм, работа выхода электронов 5,30эВ. Найти максимальную скорость фотоэлектронов.

При длине волны радающего света 491нм задерживающая разность потенциалов 0,71В. Какова работа выхода электронов? Какой стала длина волны света, если задерживающая разность потенциалов стала равной 1,43В?

Кинетическая энергия фотоэлектронов 2,0 эВ, красная граница фотоэффекта 3,0*10 14 Гц. Определить энергию фотонов.

Красная граница фотоэффекта 0,257 мкм, задерживающая разность потенциалов 1,5В. Найти длину волны падающего света.

Красная граница фотоэффекта 2850 ангстрем. Минимальное значение энергии фотона, при котором возможен фотоэффект?

Задачи по теме «Фотоэффект»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Задачи с решениями по теме «ФОТОЭФФЕКТ»

Задание1. Фотон с длиной волны, соответствующей красной границе фотоэффекта, выбивает электрон из металлической пластинки (катода), помещенной в сосуд, из которого откачан воздух. Электрон разгоняется однородным электрическим полем напряженностью Е . Пролетев путь s =5·10 -4 м, он приобретает скорость υ=3·10 6 м/с. Какова напряженность электрического поля? Релятивистские эффекты не учитывать.

Уравнение Эйнштейна в данном случае будет иметь вид: , из чего следует, что начальная скорость вылетевшего электрона υ 0 =0. Формула, связывающая изменение кинетической энергии частицы с работой силы со стороны электрического поля: .

Работа силы связана с напряженностью поля и пройденным путем: . Отсюда .

Ответ: .

Задание 2. При облучении металлической пластинки квантами света с энергией 3 эВ из нее выбиваются электроны, которые проходят ускоряющую разность потенциалов . Какова работа выхода , если максимальная энергия ускоренных электронов равна удвоенной энергии фотонов, выбивающих их из металла?

Уравнение Эйнштейна для фотоэффекта: .

Энергия ускоренных электронов: .

По условию: .

Отсюда: .

Ответ: .

Задание 3. Красная граница фотоэффекта для вещества фотокатода . При облучении катода светом с длиной волны фототок прекращается при напряжении между анодом и катодом . Определите длину волны .

Уравнение Эйнштейна для фотоэффекта: (1).

Условие связи красной границы фотоэффекта и работы выхода: (2).

Выражение для запирающего напряжения — условие равенства максимальной кинетической энергии электрона и изменения его потенциальной энергии при перемещении в электростатическом поле: (3).

Решая систему уравнений (1), (2) и (3), получаем: .

Ответ: .

Задание 4. В двух опытах по фотоэффекту металлическая пластинка облучалась светом с длинами волн соответственно нм и нм. В этих опытах максимальные скорости фотоэлектронов отличались в раза. Какова работа выхода с поверхности металла?

Уравнение Эйнштейна для фотоэффекта в первом опыте:

Уравнение Эйнштейна для фотоэффекта во втором опыте:

Отношение максимальных скоростей фотоэлектронов: . (3)

Решая систему уравнений (1)—(3), получаем: .

Ответ: .

Задание 5. Источник в монохроматическом пучке параллельных лучей за время излучает фотонов. Лучи падают по нормали на площадку и создают давление При этом фотонов отражается, а поглощается. Определите длину волны излучения.

Выражение для давления света

. (1)

Формула (1) следует из: и .

Формулы для изменения импульса фотона при отражении и поглощении лучей , , число отраженных и поглощенных фотонов.

Тогда выражение (1) принимает вид .

Для импульса фотона .

Выражение для длины волны излучения

Ответ:

Задание 6. Для измерения величины постоянной Планка h в своё время использовался следующий опыт. В вакуумный фотоэлемент помещался катод из какого-либо металла, окружённый металлическим анодом. Катод облучали светом определённой длины волны (и частоты) и измеряли задерживающее напряжение между катодом и анодом, при котором ток в цепи с фотоэлементом прекращался. Оказалось, что при длине волны света, падающего на фотокатод, равной , задерживающее напряжение было равно , а при освещении светом с частотой оно равнялось . Найдите по этим данным величину постоянной Планка.

Используем при решении задачи уравнение Эйнштейна для фотоэффекта:

Где — работа выхода фотоэлектрона из катода, а и υ — масса и скорость электрона.

Кроме того, учтем связь частоты и длины волны света , а также тот факт, что ток в цепи с фотоэлементом прекращается при таком задерживающем напряжении U 3 , что кинетическая энергия фотоэлектрона равна работе против сил задерживающего электрического поля: .

Запишем уравнение Эйнштейна с учётом приведённых выше соотношений для двух случаев, упомянутых в условии:

Вычтем из второго уравнения первое и получим:

.

Ответ: .

Задание 7. Металлическая пластина облучается светом частотой Гц. Работа выхода электронов из данного металла равна 3,7 эВ. Вылетающие из пластины фотоэлектроны попадают в однородное электрическое поле напряжённостью 130 В/м, причём вектор напряжённости направлен к пластине перпендикулярно её поверхности. Какова максимальная кинетическая энергия фотоэлектронов на расстоянии 10 см от пластины?

Согласно уравнению фотоэффекта, максимальная кинетическая энергия вылетающих фотоэлектронов равна

Направление напряженности электрического поля совпадает с направлением силы, действующей на положительный заряд. Электроны заряжены отрицательно, поэтому поле, направленное перпендикулярно к пластине, будет ускорять электроны. На отрезке длиной электрическое поле совершит работу по разгону электрона величиной . Таким образом, максимальная кинетическая энергия электронов на расстоянии 10 см от пластины равна

Правильный ответ:

Задание 8. Электроны, вылетевшие в положительном направлении оси ОХ под действием света с катода фотоэлемента, попадают в электрическое и магнитное поля (см. рисунок). Какой должна быть работа выхода A с поверхности фотокатода, чтобы в момент попадания самых быстрых электронов в область полей действующая на них сила была направлена вдоль оси OY в положительном направлении? Частота света Гц, напряжённость электрического поля В/м, индукция магнитного поля Тл.

На электрон со стороны магнитного поля действует сила Лоренца величиной F л = qυB . Направление ее определяется правилом левой руки. В данном случае сила Лоренца оказывается направленной в положительном направлении оси Oy.

Со стороны электрического поля на электрон действует сила . Поскольку электрон заряжен отрицательно, сила направлена против направления напряженности электрического поля, то есть в отрицательном направлении оси Оy.

Таким образом, чтобы в момент попадания самых быстрых электронов в область полей действующая на них сила была направлена вдоль оси OY в положительном направлении, должно выполняться условие: qυB > qE =>.

Из уравнения Эйнштейна, для максимальной кинетической энергии фотоэлектронов имеем:

Следовательно, работа выхода должна подчиняться условию

Правильный ответ:

Задание 9. Законы фотоэффекта, как выяснилось недавно, не имеют абсолютного характера. В частности, это касается «красной границы фотоэффекта». Когда появились мощные лазерные источники света, оказалось, что за счёт нелинейных эффектов в среде возможно так называемое многофотонное поглощение света, при котором закон сохранения энергии (формула Эйнштейна для фотоэффекта) имеет вид:

Какое минимальное число фотонов рубинового лазера с длиной волны должно поглотиться, чтобы из вольфрама с работой выхода был выбит один фотоэлектрон?

Для выбивания фотоэлектрона из металла необходимо, чтобы выполнялось условие:

Причём n — целое число.

Энергия одного кванта с данной длиной волны и частотой равна

Откуда то есть минимальное число поглощённых фотонов

Ответ:

Задание 10. Мощность излучения лазерной указки с длиной волны λ = 600 нм равна P = 2 мВт. Определите число фотонов, излучаемых указкой за 1 с.

Один фотон света с частотой обладает энергией Энергия излучаемая за время указкой — Значит, число фотонов , излучаемых указкой за время

Ответ:

Задание 11. Давление света от Солнца, который падает перпендикулярно на абсолютно чёрную поверхность, на орбите Земли составляет около p = 5·10 –6 Па. Оцените концентрацию n фотонов в солнечном излучении, считая, что все они имеют длину волны λ = 500 нм.

Давление света в данном случае равно, плотности потока импульса фотонов, поглощаемых абсолютно чёрной поверхностью. Каждый фотон несёт импульс Следовательно сила давления на площадку равна Таким образом, давление равно Откуда:

Ответ: 1,3·10 13 м −3 .

Задание 12. Солнечная постоянная, то есть мощность света, падающего перпендикулярно на единицу площади на уровне орбиты Земли, составляет примерно C = 1,4 кВт/м 2 . В ряде проектов для межпланетных сообщений предлагается использовать давление этого света, идущего от Солнца. Оцените силу давления света на идеально отражающий «парус» площадью S = 1000 м 2 , расположенный на орбите Земли перпендикулярно потоку света от Солнца.

Сила давления света в данном случае равна, удвоенному потоку импульса фотонов, падающему на идеально отражающую поверхность «паруса» космического корабля.

Объёмная плотность импульса фотонов равна , где — концентрация фотонов, а сила светового давления равна удвоенному импульсу всех фотонов, находящихся в цилиндре длиной c с площадью основания S , то есть

Солнечная постоянная равна энергии всех фотонов, находящихся в цилиндре длиной c с единичной площадью основания: , откуда следует, что

Задание 13. Два покрытых кальцием электрода, один из которых заземлён, находятся в вакууме. Один из электродов заземлён. К ним подключён конденсатор ёмкостью C 1 = 20 000пФ. Появившийся вначале фототок при длительном освещении прекращается, при этом на конденсаторе возникает заряд q = 2 · 10 −8 Кл. Работа выхода электронов из кальция A = 4,42 · 10 −19 Дж. Определите длину волны света, освещающего катод.

Фототок прекращается тогда, когда напряжение на конденсаторе станет равным некоторому критическому напряжению, называемому запирающем напряжением Найдём запирающее напряжение. В данном случае, это напряжение на конденсаторе, в тот момент, когда прекращается фототок: Фотон, падая на поверхность передаёт свою энергию электрону, при этом часть энергии фотона расходуется на преодоление работы выхода из металла, а оставшаяся часть энергии превращается в кинетическую энергию электрона: . Откуда c учётом выражения для запирающего напряжения:

Задание 14. Фотокатод, покрытый кальцием, освещается светом с длиной волны λ = 300 нм. Работа выхода электронов из кальция равна А вых = 4,42·10 –19 Дж. Вылетевшие из катода электроны попадают в однородное магнитное поле перпендикулярно линиям индукции этого поля и движутся по окружности с максимальным радиусом R = 4 мм. Каков модуль индукции магнитного поля В ?

Согласно второму закону Ньютона, сила Лоренца, действующая на электрон, связана с его центростремительным ускорением: Максимальную скорость фотоэлектронов находим из уравнения Эйнштейна для фотоэффекта: или где

В результате преобразований получаем:

Физика. 11 класс

Конспект урока

Физика, 11 класс

Урок 22. Фотоэффект

Перечень вопросов, рассматриваемых на уроке:

  • предмет и задачи квантовой физики;
  • гипотеза М. Планка о квантах;
  • опыты А.Г. Столетова;
  • определение фотоэффекта, кванта, тока насыщения, задерживающего напряжения, работы выхода, красной границы фотоэффекта;
  • уравнение Эйнштейна для фотоэффекта;
  • законы фотоэффекта.

Глоссарий по теме:

Квантовая физика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Фотоэффект – это вырывание электронов из вещества под действием света.

Квант — (от лат. quantum — «сколько») — неделимая порция какой-либо величины в физике.

Ток насыщения — некоторое предельное значение силы фототока.

Задерживающее напряжение — минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.

Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. которую нужно сообщить электрону, для того чтобы он мог преодолеть силы, удерживающие его внутри металла.

Красная граница фотоэффекта – это минимальная частота или максимальная длина волны света излучения, при которой еще возможен внешний фотоэффект.

Основная и дополнительная литература по теме урока:

1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 259 – 267.

2. Рымкевич А. П. Сборник задач по физике. 10-11 класс.- М.:Дрофа,2009. – С. 153 – 158.

3. Элементарный учебник физики. Учебное пособие в 3 т./под редакцией академика Ландсберга Г. С.: Т.3. Колебания и волны. Оптика. Атомная и ядерная физика. – 12-е изд. – М.: ФИЗМАТЛИТ, 2001. С. 422 – 429.

4. Тульчинский М. Е. Качественные задачи по физике в средней школе. Пособие для учителей. Изд. 4-е, переработ. и доп. М. «Просвещение», 1972. С. 157.

Теоретический материал для самостоятельного изучения

В начале 20-го века в физике произошла величайшая революция. Попытки объяснить наблюдаемые на опытах закономерности распределения энергии в спектрах теплового излучения оказались несостоятельными. Законы электромагнетизма Максвелла неожиданно «забастовали». Противоречия между опытом и практикой были разрешены немецким физиком Максом Планком.

Гипотеза Макса Планка: атомы испускают электромагнитную энергию не непрерывно, а отдельными порциями – квантами. Энергия Е каждой порции прямо пропорциональна частоте ν излучения света: E = hν.

Коэффициент пропорциональности получил название постоянной Планка, и она равна:

h = 6,63 ∙ 10 -34 Дж∙с.

После открытия Планка начала развиваться самая современная и глубокая физическая теория – квантовая физика.

Квантовая физика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Поведение всех микрочастиц подчиняется квантовым законам. Но впервые квантовые свойства материи были обнаружены именно при исследовании излучения и поглощения света.

В 1886 году немецкий физик Густав Людвиг Герц обнаружил явление электризации металлов при их освещении.

Явление вырывания электронов из вещества под действием света называется внешним фотоэлектрическим эффектом.

Законы фотоэффекта были установлены в 1888 году профессором московского университета Александром Григорьевичем Столетовым.

Схема установки для изучения законов фотоэффекта

Первый закон фотоэффекта: фототок насыщения — максимальное число фотоэлектронов, вырываемых из вещества за единицу времени, — прямо пропорционален интенсивности падающего излучения.

Зависимость силы тока от приложенного напряжения

Увеличение интенсивности света означает увеличение числа падающих фотонов, которые выбивают с поверхности металла больше электронов.

Второй закон фотоэффекта: максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением частоты падающего излучения.

Третий закон фотоэффекта: для каждого вещества существует граничная частота такая, что излучение меньшей частоты не вызывает фотоэффекта, какой бы ни была интенсивность падающего излучения. Эта минимальная частота излучения называется красной границей фотоэффекта.

где Ав – работа выхода электронов;

h – постоянная Планка;

νmin — частота излучения, соответствующая красной границе фотоэффекта;

с – скорость света;

λкр – длина волны, соответствующая красной границе.

Фотоэффект практически безынерционен: фототок возникает одновременно с освещением катода с точностью до одной миллиардной доли секунды.

Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.

Для большинства веществ фотоэффект возникает только под действием ультрафиолетового облучения. Однако некоторые металлы, например, литий, натрий и калий, испускают электроны и при облучении видимым светом.

Известно, что фототоком можно управлять, подавая на металлические пластины различные напряжения. Если на систему подать небольшое напряжение обратной полярности, «затрудняющее» вылет электронов, то ток уменьшится, так как фотоэлектронам, кроме работы выхода, придется совершать дополнительную работу против сил электрического поля.

Задерживающее напряжение — минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.

Максимальная кинетическая энергия электронов выражается через задерживающее напряжение:

где — максимальная кинетическая энергия электронов;

Е – заряд электрона;

– задерживающее напряжение.

Теорию фотоэффекта разработал Альберт Эйнштейн. На основе квантовых представлений Эйнштейн объяснил фотоэффект. Электрон внутри металла после поглощения одного фотона получает порцию энергии и стремится вылететь за пределы кристаллической решетки, т.е. покинуть поверхность твердого тела. При этом часть полученной энергии он израсходует на совершение работы по преодолению сил, удерживающих его внутри вещества. Остаток энергии будет равен кинетической энергии:

В 1921 году Альберт Эйнштейн стал обладателем Нобелевской премии, которая, согласно официальной формулировке, была вручена «за заслуги перед теоретической физикой и особенно за открытие закона фотоэлектрического эффекта».

Если фотоэффект сопровождается вылетом электронов с поверхности вещества, то его называют внешним фотоэффектом или фотоэлектронной эмиссией, а вылетающие электроны — фотоэлектронами. Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним.

Примеры и разбор решения заданий

1. Монохроматический свет с длиной волны λ падает на поверхность металла, вызывая фотоэффект. Фотоэлектроны тормозятся электрическим полем. Как изменятся работа выхода электронов с поверхности металла и запирающее напряжение, если уменьшить длину волны падающего света?

Для каждой величины определите соответствующий характер изменения:

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Работа выхода — это характеристика металла, следовательно, работа выхода не изменится при изменении длины волны падающего света.

Запирающее напряжение — это такое минимальное напряжение, при котором фотоэлектроны перестают вылетать из металла. Оно определяется из уравнения:

Следовательно, при уменьшении длины волны падающего света, запирающее напряжение увеличивается.

2. Красная граница фотоэффекта для вещества фотокатода λ0 = 290 нм. При облучении катода светом с длиной волны λ фототок прекращается при напряжении между анодом и катодом U = 1,5 В. Определите длину волны λ.

Запишем уравнение для фотоэффекта через длину волны:

Условие связи красной границы фотоэффекта и работы выхода:

Запишем выражение для запирающего напряжения – условие равенства максимальной кинетической энергии электрона и изменения его потенциальной энергии при перемещении в электростатическом поле:

Решая систему уравнений (1), (2), (3), получаем формулу для вычисления длины волны λ:

Подставляя численные значения, получаем: λ ≈ 215 нм.


источники:

http://infourok.ru/zadachi-po-teme-fotoeffekt-1668075.html

http://resh.edu.ru/subject/lesson/4917/conspect/