Задачи на уравнение плоскости 11 класс

4.2.10. Примеры решения задач по теме «Уравнение плоскости в пространстве»

Составить уравнение плоскости, проходящей через точки А=<5; -1; 3>,

Для того, чтобы составить уравнение плоскости, нужно знать координаты

Точки, лежащей в этой плоскости, и координаты нормали, то есть вектора, перпендикулярного плоскости.

Векторы АВ = (-3; 3; -3) и АС = (-6; 2; -2) параллельны данной плоскости, поэтому их векторное произведение или любой вектор, коллинеарный ему, является нормалью к плоскости.

Выберем в качестве нормали П = (0; 1; 1), а точкой <Х0; У0; Z0> будем считать точку В. Тогда уравнение плоскости имеет вид:

Составить канонические уравнения прямой

Для того, чтобы составить канонические или параметрические уравнения прямой в пространстве, нужно знать координаты какой-либо точки, лежащей на этой на этой прямой, и координаты направляющего вектора, то есть вектора, коллинеарного прямой.

Прямая является линией пересечения двух плоскостей, поэтому ее направляющий вектор А параллелен каждой из этих плоскостей и соответственно перпендикулярен нормалям П1 и П2 к данным плоскостям. В таком случае он коллинеарен векторному произведению [N1, N2].

Будем искать точку, лежащую на данной прямой, у которой одна из координат принимает выбранное нами значение; тогда остальные две координаты можно определить единственным образом из системы уравнений, задающей пересекающиеся плоскости. Выберем для удобства вычислений Z0 = 0, тогда для точки М=<Х0; У0; 0>

Теперь составим канонические уравнения данной прямой:

Ответ:

Составить уравнение плоскости, проходящей через прямую L:

Точка А= <-3,5,-1>принадлежит плоскости, соответственно вектор параллелен плоскости. Кроме того, поскольку данная прямая лежит в плоскости, ее направляющий вектор A = (2: 1: -1) параллелен плоскости. Следовательно, нормаль к плоскости коллинеарна векторному произведению этих векторов.

Поскольку прямая лежит в плоскости, ее направляющий вектор A = (2: 1: -1) параллелен плоскости. При T = 0 из уравнений прямой получаем:

Координаты точки А, принадлежащей прямой и соОтВетственно плоскости.

Тогда вектор АМ = (5; -8; 2) параллелен Плоскости. Следовательно, нормаль

П к плоскости коллинеарна векторному произведению [A, AM] = (-6; -9; — 21).

Выберем N = (2; 3; 7) и составим уравнение плоскости, проходящей через

Найти кратчайшее расстояние между прямыми

Координаты направляющих векторов данных прямых A1 = <3; 2; -2>и

A2 = <1; 1; 4>не пропорциональны, следовательно, А1 и А2 не коллинеарны, поэтому прямые либо пересекаются, либо скрещиваются.

Составьте уравнение плоскости A, проходящей через прямую L1 параллельно вектору А2. Если L1 и L2 пересекаются, то прямая L2 будет лежать в этой плоскости; если же L1 и L2 скрещиваются, то L2 параллельна плоскости A, и тогда расстояние между L1 и L2 (длина общего перпендикуляра) будет равно расстоянию от любой точки прямой L2 до плоскости A.

Координаты направляющих векторов данных прямых A1 = <3; 2; -2>и

A2 = <1; 1; 4>не пропорциональны, следовательно, А1 и А2 не коллинеарны, поэтому прямые либо пересекаются, либо скрещиваются.

Составим уравнение плоскости A, проходящей через прямую L1 параллельно вектору А2. Если L1 и L2 пересекаются, то прямая L2 будет лежать в этой плоскости (рис.9); если же L1 и L2 скрещиваются, то L2 параллельна плоскости A, и тогда расстояние между L1 и L2 (длина общего перпендикуляра) будет равно расстоянию от любой точки прямой L2 до плоскости A (рис.10).

[A1, A2] = (10; -14; 1) = N, точка А= <5; 0; -25>лежит на прямой L1, следова-тельно, она лежит и в плоскости A. Тогда уравнение плоскости A имеет вид:

Точка В= <1; 2; 13>принадлежит прямой L2. Проверим, лежит ли эта точка в плоскости A:

Тогда искомой величиной будет расстояние от В до A. Его можно найти, составив нормальное уравнение плоскости A:

Ответ: .

Найти точку, симметричную точке А(5; -10; 4) относительно плоскости

Искомая точка В лежит на прямой, проходящей через точку А перпендикулярно плоскости A так, что ОА = ОВ, где точка О – точка пересечения A с прямой АВ.

Искомая точка В лежит на прямой, проходящей через точку А перпендикулярно плоскости A так, что ОА = ОВ, где точка О – точка пересечения A с прямой АВ. Составим уравнения прямой АВ. Эта прямая перпендикулярна A, поэтому ее направляющим вектором можно считать нормаль к плоскости A: A = N = (1; -3; 1).

Параметрические уравнения прямой АВ имеют вид:

Точка О принадлежит и прямой АВ, и плоскости A, поэтому ее координаты должны удовлетворять и уравнениям прямой, и уравнению плоскости. Подставим в уравнение плоскости A параметрические выражения для X, Y, Z из уравнений прямой АВ:

T + 5 – 3(-3T – 10) + T + 4 – 6 = 0; 11T + 33 = 0; T = -3.

Итак, координаты точки О:

Поскольку точка О – середина отрезка АВ, то

Геометрия. 11 класс

Конспект урока

Геометрия, 11 класс

Урок № 3. Координатный метод решения задач

Перечень вопросов, рассматриваемых в теме:

  • специфика и преимущества решения задач в пространстве координатным методом;
  • типы задач, решаемые координатным методом;
  • этап решения задачи координатным методом;
  • решение несложных задач методом координат.

Глоссарий по теме

Уравнение вида задает в пространстве плоскость α.

При этом вектор – это вектор, перпендикулярный плоскости α. Его называют вектор нормали, или нормальный вектор, или нормаль. Очевидно, что нормалью является любой вектор, коллинеарный вектору .

Вектор и любой коллинеарный ему вектор называются направляющим векторами прямой и прямой соответственно.

Шарыгин И.Ф. Геометрия. 10–11 кл. : учеб. для общеобразоват. Учреждений – М.: Дрофа, 2009. – 235, : ил., ISBN 978–5–358–05346–5, сс. 163-170.

Потоскуев Е.В., Звавич Л. И. Геометрия. 11кл.: учеб. Для классов с углубл. И профильным изучением математики общеобразоват. Учреждений – М.: Дрофа, 2004. – 368 с.: ил., ISBN 5–7107–8310–2, сс. 353-260.

Открытые электронные ресурсы:

Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/

Теоретический материал для самостоятельного изучения

Работа по теме урока. Объяснение новой темы

Мы рассмотрели несложную задачу на применение метода координат в пространстве.

Векторы , угол между которыми мы искали, называются направляющими векторами прямой и прямой соответственно.

Рассмотрим этот метод более подробно.

Суть метода координат на плоскости и в пространстве заключается в следующем.

  1. Ввести систему координат удобным образом (исходя их свойств заданной фигуры)
  2. Записать условие задачи в координатах, определив во введенной системе координат координаты точек и/или векторов
  3. Используя алгебраические преобразования, решить задачу
  4. Интерпретировать полученный результат в соответствии с условием данной задачи

В рассмотренном нами примере, поскольку был дан куб, мы могли ввести систему координат с центром в любой его вершине.

В координатах удобно решать задачи, связанные с поиском расстояний и углов. Но для того чтобы его использовать, нужно знать некоторые формулы:

  1. Угол между прямыми
  2. Угол между прямой и плоскостью
  3. Угол между плоскостями
  4. Расстояние от точки до плоскости
  5. Расстояние от точки до прямой в пространстве
  6. Расстояние между скрещивающимися прямыми

Расстояние между параллельными плоскостями определяется как расстояние от точки, лежащей в одной плоскости, до другой плоскости.

Мы рассмотрим только первые четыре формулы.

Угол между прямыми

Если прямая задана двумя точками A и B, то известен направляющий вектор этой прямой с координатами <>. Пусть вторая прямая имеет направляющий вектор . Тогда угол между векторами вычисляется по формуле:

.

Дальше ищется арккосинус от найденного числа. Заметим, что если косинус получился отрицательным, то это значит, что угол между векторами тупой. Поэтому мы берем модуль получившегося числа.

Фактически мы уже рассмотрели пример вычисления угла между прямыми в пространстве.

Угол между прямой и плоскостью

Сначала рассмотрим уравнение плоскости, проходящей через три точки.

.

Вам известно, что в пространстве плоскость задается уравнением, аналогичным тому, которое на плоскости задает прямую.

Если линейное уравнение вида на плоскости задает прямую l, то уравнение вида задает в пространстве плоскость α. При этом вектор – это вектор, перпендикулярный плоскости α. Его называют вектор нормали, или нормальный вектор, или нормаль.

Вам известно, что три точки в пространстве определяют единственную плоскость. Поэтому, если заданы три точки, то мы можем найти уравнение плоскости

Мы можем подставить координаты заданных точек в уравнение плоскости и решить систему из трех уравнений с тремя переменными:

В этой системе четыре неизвестных, однако, мы можем избавиться от одной, если разделим все уравнения на D:

.

Для изучения данного способа в 11 классе на базовом уровне введение понятий матрица, определитель матрицы не желателен, данные понятия не входят в базовый курс изучения геометрии.

Иногда эта система оказывается несложной. Но иногда бывает трудно ее решить, и тогда можно использовать следующую формулу:

Обозначение |M| означает определитель матрицы М.

В нашем случае матрица представляет собой таблицу 3х3 элемента. И определитель |M| вычисляется следующим образом:

.

Таким образом, уравнение плоскости будет записано так:

Написать уравнение плоскости, проходящей через точки K(1; -2; 3), L (0; 1; 1), M (1; 0; 1).

.

Решая ее, получим значения А, В и С: . То есть уравнение плоскости имеет вид:

.

Ответ: .

Теперь запишем формулу угла между прямой и плоскостью.

Пусть дано уравнение плоскости: и известен — направляющий вектор прямой.

Тогда – синус угла между прямой и плоскостью.

Найдем угол между прямой и плоскостью. В качестве плоскости возьмем ту, уравнение которой мы только что написали:

Прямая проходит через точки Т(2; -1; 4) и Р(3; 2; 2).

Направляющий вектор прямой: .

Найдем синус угла между прямой и плоскостью:

.

Угол между прямой и плоскостью .

Ответ: .

Угол между плоскостями

уравнение первой плоскости:

уравнение второй плоскости:

Тогда — косинус угла между этими плоскостями.

Найдем угол между плоскостями:

и .

Найдем косинус угла между плоскостями:

.

Угол между плоскостями:

Ответ:

Расстояние от точки до плоскости

Пусть координаты точки: , уравнение плоскости: .

Тогда Расстояние от точки до плоскости вычисляется по формуле: .

Найдем расстояние от точки М(4; 3; 4) до плоскости .

.

Теперь рассмотрим решение задачи координатным методом с использованием рассмотренных формул.

АВС…D1 – куб с ребром 4. Найти расстояние от точки А до плоскости ЕКС (Е – середина D1C1, K – середина C1B1)

Введем систему координат с началом в вершине А так, как показано на рисунке:

Интересующие нас точки будут иметь координаты:

A(0; 0; 0), C(4; 4; 0), E(4; 2; 4), K(2; 4; 4).

Напишем уравнение плоскости ЕКС:

.

Решая ее, получим значения А, В, С и D: .

Уравнение плоскости имеет вид:

Теперь найдем расстояние от точки А до плоскости ЕКС: .

Ответ: .

Рассмотрим задачу (№14 из варианта ЕГЭ).

В кубе ABC…D1 все рёбра равны 4. На его ребре BB1 отмечена точка K так, что KB = 3. Через точки K и C1 построена плоскость α, параллельная прямой BD1.

а) Докажите, что A1P : PB1 = 2 : 1, где P — точка пересечения плоскости α с ребром A1B1.

б) Найдите угол наклона плоскости α к плоскости грани BB1C1C.

Переформулируем первый пункт этой задачи таким образом:

Проведем плоскость через точки Р, K и C1 и докажем, что она параллельна прямой BD1.

Введем систему координат так, как показано на рисунке:

Найдем координаты точек :

Р(; 0; 4), К(4; 0; 3),(4; 4; 4).

Напишем уравнение плоскости :

;

Решая ее, получим значения А, В, С и D: .

— уравнение плоскости

Теперь докажем, что плоскость параллельна прямой BD1.

Найдем угол между прямой BD1 и плоскостью .

Точки В и D1 имеют координаты: В (4; 0; 0), D1 (0; 4; 4).

Направляющий вектор прямой BD1 – это вектор .

Он имеет координаты .

Теперь найдем синус угла между вектором и плоскостью .

.

В этом случае нам не нужно считать знаменатель дроби. Так как числитель получился равен 0, то дробь равна 0, то есть синус угла между плоскостью и прямой равен 0, значит, плоскости параллельны или совпадают. Но, так как точка В, например, в плоскости, очевидно, не лежит, то плоскости параллельны.

Это значит, что плоскость, параллельная прямой BD1 и проходящая через точки действительно пересекает ребро A1B1в точке Р так, что A1P : PB1 = 2 : 1. Что и требовалось доказать.

Теперь рассмотри второй пункт задачи. Уравнение плоскости у нас есть. Плоскость BB1C1 параллельна координатной плоскости YOZ и проходит через точку

В(4; 0; 0). Поэтому она имеет уравнение .

То есть ее коэффициенты .

Найдем угол между плоскостями, используя формулу

Ответ: .

Уравнение плоскости
презентация к уроку по геометрии (11 класс) по теме

Презентация «Уравнение плоскости» 11 класс

Скачать:

ВложениеРазмер
uravnenie_ploskosti_po_trem_tochkam.ppt821 КБ

Предварительный просмотр:

Подписи к слайдам:

Уравнение плоскости, проходящей через три точки Задачи ЕГЭ (С2)

Уравнение плоскости Ах + Ву + С z + D = 0, где А, В, С , D – числовые коэффициенты

Особые случаи уравнения: D = 0, Ax+By+Cz = 0 плоскость проходит через начало координат . А = 0; Ву + Cz +D = 0 плоскость параллельна оси Ох В = 0; Ах + Cz +D = 0 плоскость параллельна оси Оу C = 0, Ax+By+D = 0 плоскость параллельна оси Oz.

Особые случаи уравнения: А = В = 0, Сz + D = 0 плоскость параллельна плоскости Оху А = С = 0, Ву + D = 0 плоскость параллельна плоскости Охz B = C = 0, Ax + D = 0 плоскость параллельна плоскости Oyz.

Особые случаи уравнения: C = D = 0, Ax +By = 0 плоскость проходит через ось Oz. Уравнения координатных плоскостей: x = 0, плоскость О yz y = 0, плоскость О xz z = 0 , плоскость О xy

Плоскость не проходит через начало координат, не параллельна координатным осям

Точки пересечения с осями координат с осью Ох: (- D/A; 0; 0) с осью О y : ( 0; -D/B; 0) с осью О z : ( 0; 0; -D/C)

Алгоритм составления уравнения плоскости, проходящей через три точки М( x¹, y¹, z¹), N(x², y², z²), K(x³, y³, z³) Подставить координаты точек в уравнение плоскости. Получится система трех уравнений с четырьмя переменными .

Замечание Если плоскость проходит через начало координат, положить D = 0 , если не проходит, то D = 1

Задача В правильной четырехугольной призме ABCDA¹B¹C¹D¹ со стороной основания 12 и высотой 21 на ребре АА ¹ взята точка М так, АМ = 8, на ребре ВВ ¹ взята точка К так, что В ¹ К равно 8. Написать уравнение плоскости D¹ МК.

Запишем координаты точек М(0, 0, 13) К(12, 0, 8) D¹(0, 12, 0)

Подставим в систему уравнений

Умножим обе части уравнения на -156 Уравнение плоскости D¹ МК 5 x + 13y + 12z – 156 = 0

Задача 1 В правильной четырехугольной призме ABCDA¹B¹C¹D¹ сторона основания равна 2, и диагональ боковой грани равна √10. Написать уравнение плоскостей АВ ¹ С и плоскости основания призмы.

Задача 2 В правильной шестиугольной призме ABCDEFA¹B¹C¹D¹E¹F¹ сторона основания равна 4 , и диагональ боковой грани равна 5 . Написать уравнение плоскостей А ¹ В ¹E и плоскости основания призмы.


источники:

http://resh.edu.ru/subject/lesson/6083/conspect/

http://nsportal.ru/shkola/geometriya/library/2012/11/08/uravnenie-ploskosti