Задачи по уравнениям лагранжа 2 рода

iSopromat.ru

Уравнения Лагранжа второго рода, которые представляют собой дифференциальные уравнения второго порядка относительно обобщенных координат.

Для такой системы можно записать s уравнений, которые называются уравнениями Лагранжа второго рода или дифференциальными уравнениями движения в обобщенных координатах:

Уравнения Лагранжа второго рода могут быть обобщены на случай связей, осуществляемых с трением, хотя они и не являются идеальными. Для этого следует силу трения перенести из группы сил реакции в группу активных сил, тогда связь с трением можно формально считать идеальной.

Уравнения Лагранжа второго рода представляют собой дифференциальные уравнения второго порядка относительно обобщенных координат q1, q2,…qs.

Дважды интегрируя эти уравнения и определяя по начальным условиям постоянные интегрирования, получим систему уравнений движения в обобщенных координатах:

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы

МИНИСТЕРСТВО ПУТЕЙ СООБЩЕНИЯ

Ростовский государственный университет

П. Г. Иваночкин, Т. Я. Кожевникова, А. П. Сычев

Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы

Методические указания к выполнению

расчетно-графической работы Д7 по теоретической механике

Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы. Методические указания к выполнению расчетно-графической работы Д-7 по теоретической механике /П. Г. Иваночкин, Т. Я. Кожевникова, А. П. Сычев; Ростовский госуниверситет путей сообщения. Ростов-на-Дону, 2000, 19 с.

Кратко излагается теоретический материал, приводятся примеры решения типовых задач. Даны варианты к расчетно-графической работе Д7.

Одобрены к изданию кафедрой теоретической механики РГУПС и предназначены студентам механических специальностей.

Ил. 2 Библиогр.: 4 назв.

Рецензенты: канд. физ.-мат. наук, доц. А. И. Задорожный (РГУ); канд. техн. наук, доц. В. Г. Вильданов (РГУПС)

Иваночкин Павел Григорьевич

Сычев Александр Павлович

Методические указания к выполнению

Расчетно-графических работ Д7 по теоретической механике

Подписано в печать______2000г. Формат 60х84/16.

Бумага офсетная. Печать офсетная. Усл. печ. л 0,93.

Уч.-изд. л. 0,88. Тираж ____. Изд. № 000. Заказ № ____.

Ростовский государственный университет путей сообщения.

Ризография АСУ РГУПС. Лицензия ПДЛ №65-10 от 08.08.99г.

Адрес университета: 344038, г. Ростов н/Д, пл. им. Ростовского стрелкового полка народного ополчения,2

Ó Ростовский государственный университет путей сообщения, 2000

1. Общие указания

2. Задание Д7. Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы

3. Условие задачи Д7

4. Указания к решению задачи

5. Примеры решения типовых задач

6. Данные к вариантам задания Д7

7. Схемы к вариантам задания Д7

В первой части методических указаний содержатся краткие сведения из теории и примеры решения задания Д7, входящего в курсовую работу по теоретической механике.

В приложении I студент выбирает свой вариант по номеру рисунка согласно цифре, под которой его фамилия стоит в учебном журнале. Исходные данные берутся из таблицы (приложение 2). Номер строки в ней для каждой группы назначает преподаватель.

Оформление отчета

Расчетно-графическая работа оформляется в такой последовательности:

— условие задачи с рисунком;

На отдельном листе нужно полностью переписать условие задачи и выполнить относящийся к ней рисунок. Он должен быть выполнен четко, аккуратно, карандашом. В работе надо оставлять поля для замечаний консультанта.

Решение каждой задачи следует сопровождать пояснениями, то есть надо указывать, какие теоремы, формулы или уравнения применяются для решения. Чертежи, выполняемые в процессе решения задачи, должны соответствовать конфигурации системы в рассматриваемый момент времени, на них должны изображаться все векторы (силы, ускорения). Формулы сначала надо написать в общем виде (буквенном), а затем подставлять числовые значения, рядом указывать единицы измерения. В конце расчета дается сводная таблица полученных результатов.

Порядок приема и сдачи индивидуального задания

I. Срок сдачи индивидуального задания указывается консультантом (руководителем практических занятий).

II. При защите расчетно-графической работы студент должен пояснить ход ее выполнения, ответить на все поставленные вопросы и в отдельных случаях решить предложенные ему примеры.

III. Работа, небрежно выполненная и содержащая орфографические ошибки, не принимается.

Задание не засчитывается, если указанные требования не выполнены!

Задание Д7. Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы

Краткие сведения из теории к заданию

Уравнения Лагранжа второго рода представляют собой систему уравнений динамики в обобщенных координатах. Использование их является универсальным методом получения системы дифференциальных уравнений, описывающих движение любой механической системы

Обобщенными координатами системы называется совокупность независимых параметров, которые при наименьшем числе однозначно определяют положение механической системы.

В последующем обобщенные координаты обозначаются q1, q1,…, qN или qj(j=1,2,…,N). Производные по времени от обобщенных координат называются обобщенными скоростями . Число N независимых обобщенных координат голономной системы равно числу ее степеней свободы.

Уравнения Лагранжа второго рода имеют вид

где Т — кинетическая энергия системы;

Qj — обобщенная сила, соответствующая j-той обобщенной координате.

Кинетическая энергия системы равна сумме кинетических энергий всех объектов, образующих систему.

Кинетическая энергия твердого тела определяется по формулам:

— при поступательном движении

,

– скорость центра масс тела;

,

Jz – момент инерции тела относительно оси вращения;

w — угловая скорость вращения;

— при плоскопараллельном движении

,

Jzc – момент инерции тела относительно оси, проходящей через центр масс, перпендикулярно плоскости движения.

Величина называется j-той обобщенной силой.

Если вычислить сумму элементарных работ активных сил, действующих на точки системы на возможном перемещении системы, то соответствующая формула может быть представлена в виде

поэтому часто обобщенные системы определяют как коэффициенты, стоящие в выражении суммы элементарных работ активных сил при соответствующих обобщенных возможных перемещениях.

Для определения обобщенной силы, соответствующей j-той обобщенной координате, необходимо этой координате сообщить приращение , оставляя все остальные обобщенные координаты без изменений; вычислить сумму элементарных работ всех сил, действующих на систему, на этом перемещении и полученную работу разделить на приращение обобщенной координаты

При вычислении работы сил используются следующие формулы:

— работа сил тяжести

,

h – изменение высоты между начальным и конечным положениями

— работа силы трения

— работа постоянной силы на прямолинейном перемещении

,

a — угол между направлением силы и направлением перемещения

— работа сил, приложенных к вращающемуся телу

,

Mz(F) – момент силы относительно оси вращения;

j — угол поворота тела

Методика составления уравнений Лагранжа второго рода

Составление уравнений Лагранжа второго рода производится в следующем порядке:

1) определяется число степеней свободы заданной механической системы;

2) выбираются независимые обобщенные координаты, число которых равно числу степеней свободы;

3) вычисляется кинетическая энергия Т рассматриваемой системы, которая выражается через обобщенные скорости;

4) находятся частные производные кинетической энергии по обобщенным скоростям, т. е.

затем вычисляются их производные по времени

5) определяются частные производные кинетической энергии по обобщенным координатам

6) находятся обобщенные силы Q1, Q2,…QN соответствующие выбранным обобщенным координатам;

7) полученные в п. п. 4-6 результаты подставляются в уравнения Лагранжа.

Условие задачи Д-7

Механическая система состоит из ступенчатых шкивов 1 и 2 весом Р1 и Р2 с радиусами R1=R, r1=0,4R и R2=R, r2=0,8R (массу каждого шкива считать равномерно распределенной по его внешнему ободу); грузов или сплошных однородных цилиндрических катков 3, 4, 5, веса которых Р3, Р4, Р5 соответственно. Тела системы соединены нитями, намотанными на шкивы и невесомые блоки. Участки нити параллельны соответствующим плоскостям. Грузы скользят по плоскостям без трения, а катки катятся без скольжения. Система движения в вертикальной плоскости под действием сил тяжести, кроме того, на одно из тел действует постоянная сила F, а на шкивы 1 или 2 при их вращении действуют постоянные моменты сил сопротивления М1 и М2.

Определить величину, указанную в таблице в столбце «Найти», где e1 и e2 — угловые ускорения шкивов 1 и 2, аС3, аС4, аС5 — ускорения грузов или центров масс соответствующих катков. (Если необходимо определить e1 или e2 принять R=0,25м).

Указания к решению задачи

Для исследования движения системы нужно составить уравнение Лагранжа 2-го рода. Во всех вариантах система имеет одну степень свободы, и еe положение определяется одной обобщенной координатой q. Уравнение Лагранжа — это дифференциальное уравнение 2-го порядка относительно обобщенной координаты.

(1)

Если нужно найти ускорение a3C или a4C грузов 3,4 или ускорение a5C центра масс С катка 5, то за обобщенную координату целесообразно принять перемещение х центра масс этих тел, тогда — обобщенная скорость и уравнение примет вид:

(2)

Если же нужно определить угловое ускорение e1 или e2 одного из шкивов, то за обобщенную координату нужно принять угол поворота шкива, т. е. и уравнение будет иметь вид:

(3)

Для составления уравнения (2) или (3) нужно вычислить кинетическую энергию Т системы, выразив её через обобщенную скорость ( или ) и обобщенную координату q (x или j). Затем нужно найти обобщенную силу Qx или Qj, для определения которой нужно сообщить системе возможное (малое) перемещение ( или ) и вычислить сумму элементарных работ всех сил на этом перемещении. Элементарные перемещения всех тел нужно выразить через dx или dj , тогда получим: или , т. е. коэффициенты при dx или dj в выражении dА и будут обобщенными силами.

Примечание: в варианте №21 шкивы 1, 2 и в варианте №25 шкив 2 считать однородными цилиндрами.

Примеры решения типовых задач

Дано: Р1=12Р, Р2=8Р, Р3=2Р, Р4=12Р, Р5=6Р, F=3P, M=3PR

(Р-в Н, R-в м.), R1=0,3R, r1=0,2R, R2=0,2R, r2=0,1R.

1. Система имеет одну степень свободы. За обобщенную координату возьмем перемещение груза 4 (q=x).

Предположим, груз 4 опускается. Составим уравнение Лагранжа 2го рода:

(1)

2. Определим кинетическую энергию Т системы:

(2)

Шкивы 1 и 2 вращаются вокруг неподвижной оси, грузы 3 и 4 движутся поступательно, а каток 5 движется плоскопараллельно.

(3)

(4)

3. Скорости n3 и nс, угловые скорости w1, w2 и w5 выразим через обобщенную скорость

(5)

Подставляя значения (4) и (5) в равенства (3), а затем в (2), получим:

Найдем частные производные от Т по х и :

(7)

4. Определим обобщенную силу . На чертеже покажем силы, совершающие при движении системы работу, т. е. силы тяжести , и момент пары силы М(сила работы не совершает, т. к. груз 3 движется по горизонтали).

Сообщим системе возможное перемещение dх груза 4 в направлении его движения и покажем перемещения остальных тел: груза 3-dх3, центра масс С катка 5-dхс, а для шкивов углы поворота dj1 и dj2. Вычислим сумму элементарных работ сил тяжести , , силы и момента пары сил М на этих перемещениях.

Коэффициент при dх в выражении dА будет обобщенной силой Qх.

5. Найденные величины (7) и (8) подставим в уравнение (1).

Отсюда находим:

Ответ:

Дано: Р1=2Р, Р2=0, Р3=3Р, Р4=0, Р5=4Р, F=12Р, М1=0,3РR, М2=0

R1=R, R2=R, r1=0,4R, r2=0,8R, R=0,25м, a=60°, b=30°

Найти: e2 – угловое ускорение второго шкива

1. Система имеет одну степень свободы. За обобщенную координату возьмем угол поворота шкива 2 (q=j). Предположим, что шкив вращается против часовой стрелки. Составим уравнение Лагранжа 2го рода:

(1)

2. Определим кинетическую энергию Т системы

(2)

Грузы 3 и 4 движутся поступательно, следовательно

Шкивы 1 и 2 вращаются вокруг неподвижных осей, следовательно

Каток 5 движется плоскопараллельно

3. Скорости V3, V4, VС, угловые скорости w1, w5 выразим через обобщенную скорость

Из рисунка видно, что

(точка Р касания катка и наклонной плоскости является мгновенным центром скоростей катка)

Подставим найденные выражения в формулу кинетической энергии системы

4. Определим обобщенную силу Qj. На чертеже покажем силы, совершающие при движении системы работу, т. е. силы тяжести , , и моменты пары сил М1 и М2 (силы и приложенные к осям вращения шкивов работы не совершают).

Сообщим системе возможное перемещение соответствующее повороту шкива 2 на угол против часовой стрелки и покажем перемещения остальных тел: груза 3 — , груза 4 — , центра масс С кат-ка 5 — , а для шкива 1 – угол поворота .

Вычислим сумму элементарных работ указанных активных сил (силы тяжести сила и пара сил с моментом М) на выбранном возможном перемещении системы

,

Вычислим обобщенную силу Q по формуле

Подставляя все полученные выражения в уравнение Лагранжа получим его в виде

Maple: составление уравнений Лагранжа 2 рода и метод избыточных координат

По роду профессиональной и научной деятельности я механик. Преподаю теоретическую механику в университете, пишу докторскую диссертацию в области динамики подвижного состава железных дорог. В общем, эта наука поглощает большую часть моего рабочего и даже свободного времени.

С Maple (на кафедре была 6-я версия, а у лоточников домой была куплена 8-я) познакомился ещё студентом, когда начинал работать над будущей кандидатской под крылом моего первого (ныше покойного) научного руководителя. Были и добрые люди, что помогли на самом первом этапе разобраться с пакетом и начать работать.

И вот так постепенно на его плечи была переложена большая часть вычислительной работы по подготовке диссертации. Диссертация была защищена, а Maple навсегда остался надёжным помошником в научном труде. Часто бывает необходимо быстро оценить какую-нибудь задачу, составить уравнения, исследовать их аналитически, быстро получить численное решение, построить графики. В этом отношении Maple просто незаменим для меня (ни в коем разе не хочу обидеть приверженцев других пакетов).

Сделать всё то, что будет предложено читателю под катом, меня подвигла задача принесенная ученицей (приходится ещё заниматься и репетиторством) со школьной олимпиады. Условие задачи таково:

Груз, висящий на нити длины L = 1,1 м, привязанной к гвоздю, толкнули так, что он поднялся, а затем ударился в гвоздь. Какова его скорость в момент удара о гвоздь? Ускорение свободного падения g = 10 м/с 2 .

Если не придираться к некоторонной туманности условия, то задача достаточно проста, а её решение, полученное путем довольно громоздких для школьника выкладок, в общем виде дает результат

И вот тут захотелось проверить решение, полученное с оглядкой на школьную программу по физике независимым способом, например составив дифференциальные уравнения движения этого маятника, да не просто, а с учетом освобождения от связи (в процессе движения нить, считаемая невесомой, провисает и маятник движется как свободная точка).

Это послужило катализатором для того, чтобы взять да и откопать свои старые задумки, накопленные ещё со времен работы в оргкомитете Всероссийской Олимпиады студентов по теоретической механике — три года подряд занимался там подготовкой задач компьютерного конкурса. Задумки касались автоматизации построения уравнений движений для механических систем с неудерживающими связями и трением, используя известные всем уравнения Лагранжа 2 рода

поборов стереотип многих преподавателей о том, что уравнения эти неприменимы к системам с неудерживающими связями и трением.

Что касается Maple, то его библиотека для решения задач вариационного исчисления дает возможность быстро получить уравнения Эйлера-Лагранжа, решение которых минимизирует действие по Гамильтону, что применимо для консервативных систем

где — функция Лагранжа, равная разности кинетической и потенциальной энергий системы.

Так как расматриваемые задачи не относятся к классу консервативных, то автором была предпринята попытка самостоятельно реализовать автоматизацию построения и анализа уравнений движений. Что из этого вышло, изложено под катом

1. Метод избыточных координат

Рассматриваем механическую систему, имеющую s степеней свободы, положение которой описывается вектором обобщенных координат . Пусть также имеется r неудерживающих связей, к числу реакций которых можно причислить и трение покоя, при превышении предельного значения переходящее в активную силу трения скольжения, направление которой противоположно направлению относительной скорости скольжения.

Учет неудерживающих связей требует от нас определения и анализа величины их реакций, поэтому необходимо так же определить их величину. Уберем указанные связи и введем дополнительно r обобщенных координат, выразив через них кинетическую энергию системы

Составим s + r уравнений движения в форме уравнений Лагранжа 2 рода

содержащие s+r неизвестных координат и r неизвестных реакций связей. Считая связи удерживающими, дополняем данную систему уравнениями связей (для простоты рассматривая геометрические связи) в виде

получаем замкнутую систему уравнений, из которой находятся значения реакций

являющиеся функциями первых s (независимых) обобщенных координат и скоростей и они могут быть расчитаны на любом шаге интегрирования уравнений движения (1). Для удерживающих связей типа «нить/поверхность» уравнения (1) и (2) надо дополнить условием освобождения от связи

а для связей с сухим трением вида

где Fj и Nj соответственно касательная и нормальная составляющая реакции; vj — проекция скорости относительного проскальзывани точки приложения реакции.

Таким образом, уравнения (1) — (4) представляют собой полную математическую модель движения рассматриваемой механической системы.

Засим с теорией можно покончить и перейти к практике

2. Maple-функции построения и анализа уравнений Лагранжа

Для решения этой задачи была написана Maple-библиотека lagrange, содержащая четыре функции

LagrangeEQs — построение уравнений движения в форме Лагранжа 2 рода

В качестве входных параметров функция принимает выражение кинетической энергии T как функцию обобщенных координат и обобщенных скоростей; массив обобщенных координат q; массив радиус-векторов точек приложения сил r и массив векторов сил F.

LinksEQs — получение уравнений дифференциальных связей из уравнений геометрических связей

Здесь надо отметить, что система уравнений геометрических связей eqs должна содержать избыточные координаты в явном виде, то есть иметь вид

в противном случае функции библиотеки не смогут обработать уравнения правильно. Для тестирования возможностей библиотеки сойдет и так, но в дальнейшем этот момент будет переработан: просто пока неясно, будет ли гарантированно разрешена система уравнений связи относительно угловых избыточных координат.

ReduceSystem — преобразование уравнений движения с учетом уравнений связей

Данный код в подробных пояснениях не нуждается — тут выполняется подстановка избыточных обобщенных координат, скоростей и ускорений, выражаемых уравнениями геометрических и дифференциальных связей в уравнения движения, с целью приведения их к виду, пригодному для вычисления реакций неудерживающих связей

SolveAccelsReacts — решение уравнений движения относительно реакций и обобщенных ускорений

Данная функция принимает на вход систему уравнений движения eqs, преобразованную с учетом уравнений связей. Она линейна относительно вторых производных независимых координат и реакций связей. Другие входные параметры: q — вектор независимых координат; R — массив реакций, относительно которых необходимо разрешить уравнения движения.

Теперь проиллюстрируем, как применять описанное «хозяйство» в деле

3. Задача о маятнике на тонкой нерастяжимой нити

Расчетная схема будет такой. В качестве обобщенной координаты выбираем угол наклона нити к вертикали.

Поскольку нить — неудерживающая связь, нас будет интересовать её реакция, а значит введем дополнительную, избыточную координату r(t).

Приступаем. Чистим память и подключаем библиотеку линейной алгебры

Подключаем библиотеку lagrange

Определяем вектор обобщенных координат, вычисляем координаты и скорость груза, а так же кинетическую энергию системы

На выходе получаем выражение для кинетической энергии (для вставки сюда использована функция latex(), генерирующая результат в LaTeX-нотации)

Формируем массив сил и массив координат точек их приложения

Скармливаем всё функции LagrangeEQs()

получая на выходе уравнения движения

Нетрудно убедится, что функция отработала нормально — для иллюстрации специально выбрана не слишком громоздкая задача.

Далее задаем уравнение связи — пока нить натянута, справедливо условие

преобразуем систему с учетом этого условия и находим реакцию связи

Сила натяжения нити равна

Система (5) — (7) является полной системой уравнений движения груза, с учетом возможности провисания нити. Теперь подготовим её к численному интегрированию. Для начала разрешим её относительно ускорений, передав в SolveAccelsReacts() уравнения (5) и (6), вектор обобщенных координат и пустой массив реакций

получая на выходе

Для численного моделирования, хоть это и не спортивно, напишем отдельный код, дабы не забивать голову читателя длительной обработкой полученной системы напильником. Тем более что моделирование будет иметь свои особенности.

Готовим исходные данные и систему уравнений движения

Строим функцию вычисления состояния системы, при заданной горизонтальной начальной скорости груза

Теперь проверяем «школьное» решение задачи

В итоге, получаем результат, приведенный на скриншоте. Скорость груза в момент удара соответствует приведенному в предисловии значению, и видно, что до провисания нити груз движется по окружности, а после провисания нити движется как свободная точка под действием силы тяжести, по параболе.

Замечу, что погрешности попадания в гвоздь — вынужденная мера: в полярных координатах, которые были использованы, задача имеет особенность, понятную из уравнения (8). Поэтому r(t) сравнивалось не с нулем, а с величиной eps достаточно малой, чтобы получить решение, и достаточно большой, чтобы численный решатель fsolve() не сходил с ума. Однако это нисколько не умаляет практической ценности изложенных результатов.

Вместо заключения

Возможно, читатель упрекнет меня, что я стреляю из пушки по воробьям. Однако, хочется заметить, что всё сложное начинается с простого, а большая наука — с малых задач.

Тестовую версию библиотеки можно качнуть тут


источники:

http://pandia.ru/text/80/291/23590.php

http://habr.com/ru/post/244957/