Задачи приводящие к дифференциальным уравнениям доклад

Задачи приводящие к дифференциальным уравнениям доклад

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО

ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО

«БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра математического анализа

Физические задачи, приводящие к дифференциальным уравнениям

Выполнила: студентка 2 курса

Научный руководитель: к.ф.-м.н.,

доцент Сабитова Ю.К.

1. Электрические цепи

2. Распространение тепла

3. Построение ортогонального семейства кривых

4. Уравнение химической кинетики

5. Реактивное движение

6. Из пушки на Луну

7. Форма равновесия жидкости во вращающемся сосуде

8. Фокусирующее зеркало

10. Уравнение струны

В настоящее время складываются основы новой методологии научных исследований — математического моделирования.

Сущность этого исследования состоит в замене исходного объекта математической моделью, и решения поставленной задачи с помощью современных вычислительных средств.

Моделирование — это метод исследования каких-либо процессов, явлений, который предполагает создание искусственных или естественных систем, имитирующих существенные свойства оригинала.

Математическое моделирование в настоящий момент является одной из главных составляющих научно-технического прогресса. Без применения этой методологии не реализуется ни один крупномасштабный технологический, социальный, экологический проект.

В частности, в качестве математических моделей реальных процессов могут быть использованы дифференциальные уравнения. Довольно часто при изучении многих процессов, протекающих в природе, бывает довольно сложно установить зависимость между функциями, характеризующими те или иные величины. Но зато в некоторых случаях возможно установить связь между теми же функциями и их производными. Это приводит к уравнениям, содержащим неизвестные функции под знаком производной, то есть к дифференциальным уравнениям (с их помощью процесс может быть описан проще и полнее). Отрасль математического анализа, изучающая дифференциальные уравнения, является одной из самых важных по своим положениям.

Эффективность использования дифференциальных уравнений в качестве математических моделей обеспечивается историческими истоками самих дифференциальных уравнений и современными взглядами на многие законы природы с позиции дифференциальных уравнений, приложениями дифференциальных уравнений в современной науке и технике, развитием методов интегрирования и общей теории дифференциальных уравнений, высоким уровнем вычислительной математики и техники.

В различных областях человеческой деятельности возникает большое число задач, решение которых сводиться к дифференциальным уравнениям. Например, происходит какой-либо физический, химический или биологический процесс. Зачастую закономерности данного явления можно описать при помощи дифференциальных уравнений.

Тема курсовой работы обуславливает преимущественное рассмотрение физических процессов. Например, закон изменения температуры, давления или массы с течением времени. Если имеется достаточно полная информация о течении данного процесса, то строят его математическую модель. Во многих случаях такой моделью является дифференциальное уравнение, находят все его решения и выделяют то решение, для которого выполняются дополнительные (начальные или граничные) условия.

Надо отметить, что разные по содержанию задачи приводятся к одинаковым или исходным дифференциальным уравнениям.

Цель курсовой работы: изучение физических задач, приводящих к дифференциальным уравнениям.

Рассмотреть физические задачи, приводящие к дифференциальным уравнениям;

Анализ практичности решения физических задач, приводящих к дифференциальным уравнениям.

1. Электрические цепи

Электрические цепи описываются двумя величинами: током I и падением напряжения ?U . При этом для различных элементов цепи соотношения между током и напряжением различны:

конденсатор, — его емкость,

Сумма падений напряжения на всех участках цепи равна ЭДС этой цепи (тому напряжению, которое подается в цепь извне). Получаем уравнение:

Величины L,R,C нам, как правило, известны — это характеристики эле-
ментов цепи, E(t) — заданная функция. Остается две величины: I и Q.
Но, поэтому уравнения электрического тока в цепи обычно записывают относительно неизвестной функции — заряда на обкладках конденсатора:

Все знают, что более холодное тело (или часть тела) нагревается от более горячего. Каков закон этого процесса? Чтобы выяснить это, необходимо понять, что и как описывает тепловые процессы.

Во-первых, это температура. Температура может измеряться по разным шкалам, но нас интересует не абсолютная величина температуры, а ее изменение (со временем или при переходе от одной точки тела к другой). Температуру обычно обозначают буквой T.

Во-вторых, изменение температуры связано с изменением энергии тела, причем зависимость эта линейная. Для того чтобы различать температуру и энергию, для последней введено специальное название количество теплоты (обозначается обычно Q). Таким образом, Коэффициент С называют теплоемкостью. Он зависит как от материала, из которого сделано тело, так и от его размеров (чтобы нагреть большое тело надо больше тепла). Простые соображения показывают, что для однородного материала С = M/с, где М — масса, с — удельная (на единицу массы) теплоемкость.

Если мы мысленно разобьем тело на две или несколько частей, то количество теплоты, необходимое для нагревания всего тела на 1 градус, равно сумме количеств теплоты, необходимых для нагревания его частей. Количество теплоты оказывается аддитивной функцией множества (при складывании частей в одной целое соответствующие количества теплоты складываются). Однородность означает, что одинаковые (по форме) куски нагреваются одинаково, в какой бы части тела они не находились. Другими словами, эта функция множества инвариантна относительно сдвигов и поворотов. И, наконец, множества с нулевой массой не могут поглощать тепла — это свойство типа непрерывности (если говорить точно, оно называется абсолютной непрерывностью функции множества относительно другой функции — в данном случае массы). Всякая абсолютно непрерывная функция множества, инвариантная относительно сдвигов, пропорциональна в одномерном случае — длине, в двумерном — площади, а в трехмерном — объему множества (или, что то же самое, его массе).

В случае неоднородного тела зависимость Q от Т более сложная и выражается через интеграл

где — количество теплоты, поглощенное объемом V, р(х), с(х) и Т(х)- распределение, соответственно, плотности, удельной теплоемкости и изменения температуры внутри объема.

Далее опишем процесс теплопередачи.

Для этого представим себе обыкновенный кирпич, одна стенка которою имеет температуру Т1, а противоположная — температуру Т2. Если поддерживать температуры стенок постоянными, то, в конце концов, внутри кирпича температура распределится по убыванию от одной стенки к другой.

Практический опыт, с одной стороны, и соображения подобия, с другой, показывают, что это убывание линейно:

В формуле (2) L — расстояние между стенками кирпича, l — «текущая» координата (l = 0 соответствует первой стенке с температурой Т1 , l=L — второй с температурой Т2). Что при этом происходите количеством теплоты? Тепло передается от более горячей стенки к менее горячей, однако для каждого внутреннего «среза» кирпича количество теплоты, приходящей с одной стороны, и количество теплоты, уходящей в другую, совпадают, поскольку процесс установившийся. Это количество теплоты называют тепловым потоком через соответствующий срез и обозначают той же буквой Q, что и количество теплоты.

Рис.1. Тепло передается от более горячей стенке к менее горячей

Тепловой поток зависит от:

разницы температур на стенках кирпича (чем она больше, тем интенсивней идет теплообмен);

расстояния между стенками (чем они ближе друг к другу,
тем интенсивней теплообмен); на самом деле он не зависит ни от того, ни от другого. Чтобы убедиться в этом, совершим следующий мысленный эксперимент. Пусть нас интересует, например, срез, находящийся в левой части кирпича. Распилим кирпич пополам (напомним, в середине кирпич имеет температуру ) и выбросим правую половину, а на сделанном распиле просто будем поддерживать ту же температуру. Что изменится

Рис.2. Распилим кирпич пополам

с точки зрения нашего среза? Да ничего. Тепловой поток, проходящий через него, будет в точности таким же, как и в нераспиленном кирпиче. Дальше мы можем повторить процедуру, отпилив еще один кусок кирпича, и так продолжать дальше и дальше. В итоге получаем, что на самом деле тепловой поток зависит не от разности температур, и не от расстояния между стенками, а от той самой константы, которая фигурировала у нас в формуле (2), и, которая как раз и выражается, в случае однородного тела, через отношение разности температур и расстояния, а в случае неоднородного тела — через производную по направлению нормали к нашему срезу;

г)тепловой поток пропорционален площади среза. Если
мы возьмем кирпич вдвое шире (или просто сложим два кирпича), то
тепловой поток удвоится. Здесь опять срабатывает теория аддитивных
функций множества; д)тепловой поток пропорционален времени, в течение которого он про-
ходил: за 2 часа через тот же срез пройдет вдвое больше тепла, чем за
1 час. Получаем формулу: (3)

Рис.3. Возьмем кирпич вдвое шире

или, если сделать бесконечно малым,

Знак плюс или минус выбирается в зависимости направления нормали к срезу (она ведь может быть направлена как в ту, так и в другую сторону), k — коэффициент, зависящий только от материала, называемый коэффициентом теплопроводности.

Мы не зря так долго говорили о таком банальном объекте, как кирпич. Для неоднородной среды все те же рассуждения повторяются в точности, только с той разницей, что «кирпич» является бесконечно малым (и при этом неоднородностью внутри него можно пренебречь). Формула (4) описывает тепловой поток, протекающий через любую бесконечно малую площадку S любой поверхности в любом теле. Если же мы выделили в произвольном теле некоторый объем V и хотим вычислить тепловой поток, выходящий из этого тела, нам надо проинтегрировать формулу (4) по поверхности S,

Обыкновенные дифференциальные уравнения возникают из формулы (5) при наличии в процессе распространения тепла какой-то симметрии. Тогда за счет подходящего выбора системы поверхностей «расслаивающей» тело на пласты с одинаковой температурой, удается описать процесс обыкновенным дифференциальным уравнением.

Возьмем тот же кирпич: в нем зависит только от одной координаты (например, ). Тогда, выбирая в качестве поверхностей

плоскости , получаем, интеграл просто равен этой производной, умноженной на площадь поперечного сечения кирпича с коэффициентом k, и для установившегося процесса теплоотдачи, получаем уравнение

Если наш процесс имеет сферическую симметрию (т.е. температура зависит только от расстояния r от некоторой точки, то, выбирая в качестве

системы поверхностей сферы, получим , интеграл равен

этой производной, умноженной на площадь сферы с коэффициентом k, и мы получаем другое уравнение:

Аналогично в случае цилиндрической симметрии (температура одинакова на цилиндрических поверхностях) получаем еще одно уравнение:

(здесь r — расстояние до общей оси цилиндров, l — длина образующей цилиндров).

Наконец, мы можем из того же уравнения (5) получить и общее уравнение теплопередачи, пригодное для любого тела. Подставив в него связь между изменением количества теплоты и изменением температуры (1) и воспользуемся известной формулой преобразования интеграла по поверхности от нормальной производной функции в интеграл по объему от оператора Лапласа, примененного к этой функции :

Отсюда, пользуясь тем, что справа и слева стоит интеграл по одному и тому же объему, и тем, что это равенство выполнено для любого объема, получаем равенство подынтегральных функций

известное как уравнение теплопроводности.

3. Построение ортогонального семейства кривых

В некоторых задачах физики и механики бывает необходимо по данному семейству кривых построить семейство ортогональных к ним кривых (ортогональность двух кривых в точке их пересечения понимается, естественно, как ортогональность касательных к ним).

Рис.4. Ортогональные семейства кривых

Пусть нам задано семейство, описываемое уравнением с параметром

Для построения ортогонального семейства нам необходимо вычислить касательные к кривым исходного семейства. Пусть у(х) одна из кривых. Тогда Дифференцируя, получаем

Таким образом, угловой коэффициент касательной к кривой семейства, проходящей через точку (х, y), может быть вычислен без знания самой кривой. Но тогда угловой коэффициент касательной к кривой из ортогонального семейства мы тоже можем вычислить (условие ортогональности прямых):

Это и есть уравнение ортогонального семейства. Например, для семейства окружностей получаем уравнение ортогонального семейства кривых: . Решения этого уравнения — семейство прямых у = Сх, действительно ортогональных к окружностям.

. Уравнение химической кинетики

Скорость реакции пропорциональна количеству каждого из реагирующих веществ. Опишем математически химическую реакцию. Пусть имеются два вещества А и Б, и из них в результате реакции образуется вещество X. Количества веществ А, В и X в момент времени t обозначим, соответственно, через и.Тогда

где k — коэффициент пропорциональности. Оказывается, величины а(t) и b(t) можно выразить через x(t): ведь в любой химической реакции количества веществ А и В, необходимых для образования единицы вещества X, строго фиксированы и определяются формулой реакции! Пусть на единицу вещества Х необходимо вещества A и вещества В. Тогда , (здесь , — начальные количества реагирующих веществ), и мы получаем уравнение

Аналогично в случае трех реагирующих веществ и одною на выходе получается уравнение

Уравнения (10) и (11) и называют обычно уравнениями химической кинетики.

Одним из фундаментальных законов физики является закон сохранения импульса: при распаде тела на части сумма импульсов каждой из частей равна импульсу тела до распада. И хоть этот закон обычно представляется связанным с одноактным действием (одно тело единожды распалось), его оказывается разумным использовать и в более сложных процессах, когда от тела последовательно отпадают части, как идеализация этого процесса (когда части очень мелкие и их очень много и интервал между их отпадениями

Рис.5. Закон реактивного движения

очень мал) — когда из тела непрерывно вытекает (вылетает, высыпается) какая-то масса. Именно в такой форме и записывается закон реактивного движения:

или (если, как обычно, обозначать через )

Здесь и соответственно масса и скорость ракеты в момент времени t, V — скорость истечения горючего из ракеты (точнее, это — V: обычно систему координат направляют вдоль движения ракеты, тогда горючее вытекает с отрицательной скоростью, и именно ее обозначают — V, где V — положительное число, равное абсолютной величине мой скорости). Разность — это масса вытекшего горючего, а — V — его скорость в неподвижной системе координат (напомним, что — V — это скорость движения вытекающего горючего относительно ракеты). На самом деле равенство в (12)-(13) не является вполне точным, так как процесс истечения горючего и изменения скорости происходит не «толчком», а непрерывно. Однако если промежуток времени уменьшать, то равенство перейдет в точное равенство отношению дифференциалов

(если предварительно его разделить на ). После несложных преобразований получаем закон реактивного движения

или, через производные,

который иногда записывают в форме:

. Из пушки на Луну

Еще один известный «космический» сюжет: тело (в классической интерпретации — барона Мюнхгаузена) «выстреливается» с Земли в направлении Луны и долетает до нее в свободном полете. Опишем закон полета. Пусть полет происходит по прямой, соединяющей центры Луны и Земли (расстояние между центрами обозначим R), расстояние до летящего тела от центра Земли в момент времени t будет описываться функцией (таким образом, в начальный момент времени , в конечный ). Если масса тела m, то сила притяжения Земли равна

, cила притяжения Луны , и второй закон Ньютона дает нам уравнение полета на Луну:

Рис.6. Полет от Земли до Луны

. Форма равновесия жидкости во вращающемся сосуде

цепь тепло реактивное равновесие жидкость

Пусть у нас есть цилиндрический сосуд, вращающийся вокруг своей оси с угловой скоростью . Поверхность жидкости при этом не остается плоской, а принимает форму поверхности вращения некоторой кривой. Выведем уравнение этой кривой. Для этого воспользуемся тем фактом, что частица, движущаяся по окружности радиуса r с угловой скоростью , должна иметь ускорение, равное направленное к центру окружности. Рассмотрим сечение сосуда плоскостью, проходящей через ось вращения. Пусть независимая переменная описывает расстояние от точки до оси вращения, а — форма поверхности. Изобразим ускорение. Откуда оно взялось? Конечно же, как результат (сумма) различных воздействий. Прежде всего, это — сила тяжести (она дает ускорение , направленное вертикально вниз) и сила упругой реакции самой жидкости (она дает ускорение, направленное по нормали к поверхности). Величина силы реакции и придаваемое ею ускорение нам неизвестны, но, поскольку частицы на поверхности жидкости двигаются в горизонтальной плоскости по окружностям, естественно предполагать, что реакция жидкости «компенсирует» вертикальную тяжесть, и при этом ее горизонтальная

Рис.7. Форма жидкости во вращающемся сосуде

Рис.8. Вид сверху: частица, движущаяся по окружности, должна иметь ускорение, направленное к центру

Рис.8. Вид сбоку (сечение)

составляющая и придает частицам ускорение . Изобразим силы на чертеже:

Чтобы записать соответствующие уравнения, обозначим через В абсолютную величину ускорения, придаваемого частице реакцией жидкости, расположим ось x горизонтально и направим ее вправо, ось у вертикально и направим ее вверх, угол, образуемый касательной к точке кривой у(r) с

Рис.9. Изобразим наши ускорения на чертеже

положительным направлением оси r, обозначим через. Тогда угол между направлением реакции жидкости и положительным направлением оси r равен, вертикальная проекция ускорения реакции жидкости равна, а горизонтальная . Получаем:

откуда, исключая В, получаем

Остается вспомнить, что — это производная и получить уравнение поверхности вращающейся жидкости

8. Фокусирующее зеркало

Пусть у нас есть отражающая поверхность (в плоской интерпретации отражающая кривая), позволяющая отразить параллельный пучок лучей в пучок, сходящийся в одну точку. Постараемся описать эту кривую. Для этого нам понадобится закон отражения лучей, который, для случая плоскости, мы прекрасно знаем (угол падения равен углу отражения), но который, в случае кривой поверхности, мы не сможем сформулировать. Для неплоского случая закон не намного сложнее плоского: луч, падающий в точку х поверхности, отражается от нее так же, как и от плоскости, касающейся в этой точке нашей поверхности.

Запишем задачу в математической форме. Для этого в качестве начала координат удобно взять как раз ту точку, в которую будут собираться лучи, за положительное направление движения лучей и эту ось обозначим через х, другую ось обозначим через у, а функцию, описывающую форму зеркала, — через у(х). Нарисуем траекторию луча, отразившегося в точке нашей кривой, и касательную, проходящую через эту точку. Поскольку до отражения луч шел

Рис.10. Фокусирующее зеркало

горизонтально, угол падения луча совпадает с углом, образованным касательной,

Вычислим угол отражения. Для этого заметим, что в треугольнике МОА (точка А — это точка пересечения касательной с осью абсцисс) угол МО — его внешний угол и он равен сумме двух внутренних, одни из которых — это угол отражения, а другой — угловой коэффициент касательной, то есть опять же. Поскольку угол МО — это угол поворота вектора (х,у(х)), его тангенс равен отношению, откуда получаем

В принципе можно было бы выразить из уравнений (16) и (17) углы и (или их тангенсы) и воспользоваться законом отражения , воспользовавшись тем, что равен , а он, в свою очередь, в силу (16) равен у'(х), подставим их в (17) с раскрытым тангенсом суммы. В результате получается уравнение

являющееся уравнением фокусирующего зеркала. Решение этого уравнения не гипербола, а парабола (а — параметр).

Получаем параболоид вращения (образуемый вращением этой параболы).

Задачу эту относят к классическим задачам математики. Она возникла еще в Древней Греции. Состоит она в том, чтобы определить длину цепи, подвешенной за концы (в античной формулировке эта цепь перегораживала вход в город). Мы несколько расширим задачу и постараемся определить форму цепи (при этом длина ее будет вычисляться по классическим формулам из анализа).

Рис.11. Висящая цепь

Пусть наша цепь описывается функцией у(х), заданной на некотором отрезке [а,b]. Напишем условия для этой функции, при выполнении которых цепь будет находиться в равновесии. Для этого определим действующие на нее силы. Прежде всего — это сила тяжести. На любой участок цепи [х, х+х] она действует с силой, равной

здесь — линейная плотность цени (т.е. масса на единицу длины) в точке — дифференциал дуги кривой. Интеграл, по существу, есть соответствующего участка цепи. Эта сила направлена вниз.

Кроме силы тяжести, на наш участок действуют еще какие-то силы (т.к. цепь находится в равновесии). Это — силы упругой реакции цепи, или силы натяжения. Убедиться в их существовании нетрудно. Представьте себе, что вы «оторвали» этот участок цепи и, растягивая его за концы, стараетесь придать ему ту же форму, которую он имел, находясь внутри цепи. Не надо никого убеждать в том, что этого можно добиться лишь, прикладывая к концам участка силы (причем значительные). Это и есть те самые (имеется в виду величина и направление, а не происхождение) силы, которые действуют внутри висящей цепи. Эти силы всегда направлены по касательной к точке, в которой они приложены. Обозначим величину силы натяжения, приложенной в точке х, через T(х). Теперь мы можем изобразить все на чертеже и записать условия равновесия. Если обозначить

Рис.12. Изобразим все силы на чертеже

через угол, образованный касательной в точке х с положительным направлением оси абсцисс, то горизонтальная составляющая силы натяжения в точке будет равна , а в точке х — соответственно (обратите внимание на знак минус: в точке х сила натяжения действует не вправо, а влево). Поскольку наш участок цепи находится в равновесии, их сумма равна нулю, откуда

где А — константа (параметр задачи). Она может быть определена, например, по величине натяжения в концах цепи: .

Вертикальные составляющие сил натяжения, действующие на наш участок в точках и х, соответственно, равны и — . Сумма этих сил, вместе с силой тяжести, также равна нулю.

Получаем, с учетом (19), следующее уравнение:

или, учитывая, что ,

Разделив на и устремив его к нулю, получим уравнение висящей цепи:

Задача состоит в том, чтобы описать форму струны, натянутой горизонтально за концы и находящейся под воздействием внешней нагрузки.

Эта задача практически идентична предыдущей, роль внешней нагрузки в которой играет тяжесть. Фактически, правая часть (20) — это «сила», действующая на точку х. Мы слово «сила» употребляем в кавычках потому, что это на самом деле не сила, а ее плотность распределения. «Настоящая» сила (та, которая измеряется, например, в ньютонах) на самом деле действует лишь на конечные, имеющие ненулевую длину участки цепи. Если же мы попытаемся найти силу, действующую на точку, то она окажется равной нулю. Воздействие же на одну точку описывается в терминах и равно

. Если через F(x) обозначить силу, действующую на участок струны левее х, то.

В случае висящей цепи . Теперь уже понятен общий вид уравнения деформаций струны:

Мы уже говорили, что это — уравнение равновесия, которое можно

переписать в виде

при этом второе слагаемое — это действие внешних сил, а первое определяется силами упругости. Струна находится в равновесии, значит, их сумма равна нулю. А если сумма не будет равна нулю? Тогда на нашу струну будет действовать сила, и эта сила, по второму закону Ньютона, будет вызывать ускорение. Если обозначить его буквой а, то мы получим уравнение движения:

Чтобы получить уравнение в окончательном виде, нам остается заметить, что, поскольку струна двигается, ее форма меняется с течением времени и описывается функцией не одной, а двух переменных. При фиксированном t — это форма струны (мгновенный снимок), при фиксированном х — закон движения точки с координатой x. То, что раньше было у», теперь станет второй производной функции по пространственной переменной x, а ускорение оказывается просто второй производной по временной переменной t. Добавим еще, что внешнее воздействие может теперь и меняться со временем, т.е. описываться функцией , и мы получили уравнение колебаний струны

Дифференциальные уравнения являются теоретической основой многих моделей, используемых в науке и технике. Такие процессы отражаются в физике, химии, биологии и многих других областях науки. Многие задачи физики приводят к необходимости решения дифференциальных уравнений. Это обусловлено тем, что практически все физические законы, описывающие физические процессы являются дифференциальными уравнениями, относительно некоторых функций, характеризующих эти процессы. Данные физические законы представляют собой теоретическое обобщение многочисленных экспериментов и описывают эволюцию искомых величин в общем случае, как в пространстве, так и во времени. Решение ДУ представляется важной задачей для многих сфер деятельности человека, а также играет важную роль в познании окружающего мира.

Во многих случаях составление дифференциального уравнения основывается на так называемой «линейности процесса в малом», т.е. на дифференцируемости функций, выражающих зависимость величин. Как правило, можно считать, что все существующие в том или ином процессе величины в течение малого промежутка времени изменяются постоянной скоростью. Это позволяет применить известные из физики законы, описывающие равномерно протекающие явления, для составления соотношения между значениями , т.е. величинами, участвующими в процессе, и их приращениями.

Получающееся равенство имеет лишь приближенный характер, поскольку величины меняются даже за короткий промежуток времен неравномерно. Но если разделить обе части получившегося равенства на , то получиться точное равенство. Оно содержит время t, меняющиеся с течением времени физические величины и их производные, т.е. является дифференциальным уравнением, описывающим данное явление. Таким образом, при составлении дифференциального уравнения мы делаем как бы «мгновенный снимок» процесса в данный момент времени.

В курсовой работе рассмотрены различные физические задачи, приводящие к дифференциальным уравнениям. Описаны процессы протекания данных физических явлений и составлены соответствующие дифференциальные уравнения. В основе решения физических задач с помощью дифференциальных уравнений лежит общая идея — линеаризации — замены функций на малых промежутках изменения аргумента линейными функциями.

Аксененко Е.М. Применение дифференциальных уравнений к решению задач: практикум / Е.М. Аксененко, Г.М. Чуванова. — Южно-Сахалинск, изд-во СахГУ, 2013. — 52с.

Боровских А.В., Перов А.И. Лекции по обыкновенным дифференциальным уравнениям. — Москва — Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2004, 540 стр.

Сабитов К.Б. Функциональные, дифференциальные и интегральные уравнения. — М.:Высш. шк., 2005,671с.

Вагапов В.З. Обыкновенные дифференциальные уравнения: учеб.пособие для студ.вузов — Стерлитамак: изд-во СГПА, 2008. 191 с.

Арнольд В.И. Обыкновенные дифференциальные уравнения — Ижевск: Ижевская республиканская типография. 2000. — 386с.

Егоров А.И. Обыкновенные дифференциальные уравнения с приложениями. — 2-е изд., испр. — М.: ФИЗМАТЛИТ, 2005. — 384 с. — ISBN 5-9221-0553-1.

Теги: Физические задачи, приводящие к дифференциальным уравнениям Курсовая работа (теория) Математика

Задачи, приводящие к дифференциальным уравнениям

Электронная лекция на тему:

«Задачи, приводящие к дифференциальным уравнениям

Дифференциальные уравнения с разделяющими переменными

Общие и частные решения»

Студентка: Мирошина Виктория

Преподаватель: Литвинова И.А.

Рекомендуемые файлы

Дифференциа́льное уравне́ние — уравнение, связывающее значение некоторой неизвестной функции в некоторой точке и значение её производных различных порядков в той же точке. Дифференциальное уравнение содержит в своей записи неизвестную функцию, ее производные и независимые переменные; однако не любое уравнение, содержащее производные неизвестной функции, является дифференциальным уравнением. Например, не является дифференциальным уравнением. Стоит также отметить, что дифференциальное уравнение может вообще не содержать неизвестную функцию, некоторые её производные и свободные переменные, но обязано содержать хотя бы одну из производных.

Порядок, или степень дифференциального уравнения — наибольший порядок производных, входящих в него.

Решением (интегралом) дифференциального уравнения порядка n называется функцияy(x), имеющая на некотором интервале (a, b) производные y‘(x),y»(x). y (n) (x) до порядка nвключительно и удовлетворяющая этому уравнению. Процесс решения дифференциального уравнения называется интегрированием. Вопрос об интегрировании дифференциального уравнения считается решенным, если нахождение неизвестной функции удается привести к квадратуре, независимо от того, выражается ли полученный интеграл в конечном виде или нет.

Все дифференциальные уравнения можно разделить на обыкновенные (ОДУ), в которые входят только функции (и их производные) от одного аргумента, и уравнения с частными производными (УРЧП), в которых входящие функции зависят от многих переменных. Существуют также стохастические дифференциальные уравнения (СДУ), включающие случайные процессы.

Первоначально дифференциальные уравнения возникли из задач механики, в которых участвовали координаты тел, их скорости и ускорения, рассматриваемые как функции времени.

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения (ОДУ) — это уравнения вида

или ,

где — неизвестная функция (возможно, вектор-функция; в таком случае часто говорят о системе дифференциальных уравнений), зависящая от независимой переменной , штрих означает дифференцирование по . Число называется порядком дифференциального уравнения.

Дифференциальные уравнения в частных производных

Дифференциальные уравнения в частных производных (УРЧП) — это уравнения, содержащие неизвестные функции от нескольких переменных и их частные производные. Общий вид таких уравнений можно представить в виде:

,

где — независимые переменные, а — функция этих переменных.

y» + 9y = 0 — однородное дифференциальное уравнение второго порядка. Решением является семейство функций y = (C1cos(3x) + C2sin(3x)), где C1 и C2 — произвольные константы.

Второй закон Ньютона можно записать в форме дифференциального уравнения , где m — масса тела, x — его координата, F(x,t) — сила, действующее на тело с координатой x в момент времени t. Его решением является траектория движения тела под действием указанной силы.

Колебание струны задается уравнением , где u = u(x,t) — отклонение струны в точке с координатой x в момент времени t, параметр a задает свойства струны. Это так называемое волновое уравнение.

Частное решение дифференциального уравнения

Частным решением дифференциального уравнения на интервале называется каждая функция y(x), которая при подстановке в уравнение вида

обращает его в верное тождество на интервале .

Зная общее решениеоднородного дифференциального уравнения и любое частное решение неоднородного уравнения, можно получить общее решение неоднородного уравнения в виде суммы общего решения однородного уравнения и частного решения неоднородного.

Общее решение дифференциального уравнения

Общее решение дифференциального уравнения — функция наиболее общего вида, которая при подстановке в дифференциальное уравнение вида

обращает его в тождество.

Если каждое решение дифференциального уравнения представимо в виде:

где — конкретные числа, то функция вида

при всех допустимых значениях параметров (неопределённых констант) называется общим решением дифференциального уравнения.

Пусть y(x) — некоторая функция, y‘(x) — ее производная. Для удобства будем записывать производную виде , имеющем смысл отношения бесконечно малых приращений — дифференциалов. Дифференциал dx — приращение значения переменной в окрестности x, стремящееся к нулю. Дифференциал функции dy — малое приращение функции, dy = f(x + dx) − f(x) = y‘(x)dx. Пусть f(x) и g(y) — некоторые функции от x и y. Рассмотрим уравнение

.

Уравнение такого вида называется обыкновенным дифференциальным уравнением с разделяющимися переменными. Умножим его на :

.

Последнее равенство означает, что малые приращения левой и правой частей равны. Поэтому их суммы также равны. Предположим что при x = x0y = y0 и возьмем интегралы от левой и правой частей. Пределы интегрирования — от y0 до y для левой части и от x0 для x для правой части уравнения:

.

Решая получившееся в результате интегрирования алгебраическое уравнение, мы можем выразить y(x).

Значения x0 и y0 называются начальными условиями. В случае других начальных условий решение уравнения будет отличаться на постоянную. Поэтому, если начальные условия не даны, можно взять первообразные левой и правой частей и прибавить к ним константу. Используя неопределенный интеграл — обозначение множества первообразных — , где F(x) — первообразная f(x), C — произвольная постоянная, запишем это в виде

.

Следует отметить, что у дифференциального уравнения с разделяющимися переменными могут существовать так называемые нулевые решения — постоянные y, удовлетворяющие уравнению g(y) = 0. При них равны нулю как правая, так и левая части дифференциального уравнения (поскольку производная константы равна нулю).

Решить дифференциальное уравнение .

.

Т. к. начальные условия не заданы, возьмем неопределенный интеграл от обеих частей уравнения:

,

.

Осталось лишь выразить y через x:

.

Найдем также нулевые решения:

.

Ответ:.

Определить максимальную скорость, которую может развить ракета в космосе. Начальная скорость ракеты равна нулю. Масса ракеты без топлива равна m, с топливом — m0. Скорость выброса топлива относительно ракеты равна u. Ракета движется вдали от звезд и планет.

Пусть ракета движется вдоль оси Ox (Рис. 1). В некоторый момент от нее отделяется малая масса топлива ( − dm). При этом скорость ракеты увеличивается на dv. Запишем закон сохранения импульса в проекции на Ox:

Раскрыв скобки и приведя подобные, получим:

Величина dvdm — произведение двух бесконечно малых величин. Поэтому ею можно пренебречь:

,

,

,

.

Впервые эта формула была получена К. Э. Циолковским.

Ответ:.

Пружина жесткостью k с прикрепленным к ней грузом массой m находятся в горизонтальной плоскости в положении равновесия, совпадающем с началом координат. Свободный конец пружины закреплен. Пружина параллельна оси Ox. В начальный момент времени грузу сообщают скорость v0 вдоль Ox. Найти зависимость координаты груза от времени.

В произвольный момент времени координата груза равна x, скорость — v (Рис. 2). Запишем закон сохранения энергии:

.

Выполним следующие преобразования:

,

,

.

Введя обозначение и записав скорость в виде , получим дифференциальное уравнения с разделяющимися переменными:

.

Для этого выполним замену . Тогда . Выразим дифференциал dx: , . Теперь интегрируем:

«2.3 Кривые Безье» — тут тоже много полезного для Вас.

. Подставляя в уравнение, имеем:

,

,

.

Движения, происходящие по закону синуса или косинуса называются гармоническими колебаниями. Рассмотренная система называется пружинным маятником. Видно, что в нашем случае максимальный модуль координаты равен . Он часто обозначается буковой A и называется амплитудой колебаний. Амплитуда гармонических колебаний всегда определяется начальными условиями.

Ответ:

Курсовая работа: Геометрические задачи приводящие к дифференциальным уравнениям

Елабужский Государственный Педагогический Университет

Кафедра алгебры и геометрии

«Геометрические задачи, приводящие к дифференциальным уравнениям»

При изучении геометрических задач не всегда удается непосредственно установить прямую зависимость между величинами, описывающими тот или иной эволюционный процесс. Однако в большинстве случаев можно установить связь между величинами (функциями) их изменения относительно других (независимых) переменных величин, т.е. найти уравнения, в которых неизвестные функции входят под знак производной. Эти уравнения называют дифференциальными.

Простейшим примером дифференциального уравнения является уравнение

где f(x) – известная, а y=y(x) – искомая функции независимого переменного х. Решения этого уравнения называют первообразными функциями для функции f(x). Например, решениями дифференциального уравнения

где С – произвольная постоянная, причем других решений это уравнение не имеет.

Характерное свойство дифференциальных уравнений – иметь бесконечное множество решений. В этом смысле приведенный выше пример типичен. Поэтому, решив дифференциальное уравнение, описывающее эволюцию некоторого процесса, нельзя одновременно найти зависимость между величинами, характеризующими данный процесс. Чтобы выделить из бесконечного множества зависимостей ту, которая описывает именно этот процесс, надо иметь дополнительную информацию, например, знать начальное состояние процесса. Без этого дополнительного условия задача неопределенна.

Рассмотрим несколько конкретных задач, приводящих к дифференциальным уравнениям.

Допустим, что нам известно для некоторого дифференциального уравнения F(x, у, )==0 (1) семейство

интегральных линий, которое покрывает некоторую замкнутую область G плоскости (х, у) так, что через каждую точку такой области проходит по крайней мере одна линия этого семейства. Требуется найти такую проходящую по G линию L, которая в каждой своей точке касается некоторой линии семейства (2) и каждого куска которой касается бесконечное множество линий этого семейства[1] . Такая линия L называется огибающей семейства (2). Очевидно, огибающая семейства интегральных линий будет также интегральной линией уравнения (1), так как в каждой её точке она касается некоторой интегральной кривой и, следовательно, имеет направление поля. Относительно функции F (х, у, С) нам придётся предположить, что она имеет непрерывные производные по всем своим аргументам, и сделать ещё некоторые другие предположения, о которых будет сказано несколько позже и которые в нашем тексте напечатаны курсивом.

Допустим, что искомая линия существует. Так как она в каждой своей точке (х, у) касается некоторой линии [значок С указывает то значение параметра С, при котором уравнение этой линии получается из общего уравнения (2)], то координаты её точек удовлетворяют уравнению F(x, у, С(х, у)) =0, где теперь С уже не постоянно, но в каждой точке линии L принимает свой значение (именно равное тому С, которое соответствует линии ). Будем рассматривать только такой кусок линии L, где у есть дифференцируемая функция от х (точно так же можно исследовать куски, где х есть дифференцируемая функция от у). Тогда можно считать С в предыдущем уравнении зависящим только от х и переписать это уравнение в следующем виде:

Допустим, что функция С(х) дифференцируема, не постоянна ни в каком интервале рассматриваемых значений х и нам известна. Найдём тогда из уравнения (3) значение у’ для удовлетворяющей этому уравнению функции у от х. Продифференцируем для этого уравнение (3) по х, считая у функцией от х. Получим

С другой стороны, если бы мы нашли у’ для проходящей через ту же точку (х, у) линии семейства (2), мы получили бы

Чтобы определяемые из обоих уравнений значения у’ (определить у’ из этих уравнений можно, если ) были одинаковы (т. е. чтобы в этой точке линия (2) и линия (3) имели общую касательную), необходимо, чтобы было.

Чтобы это произведение было равно 0, надо, чтобы по крайней мере один из его множителей обращался в 0. Если на некотором интервале, это будет означать, что С постоянно, что противоречит предположению. Поэтому для огибающей должно быть (4)

Легко видеть и обратное: именно, что, если при сохранении всех сделанных допущений относительно F(x, у, С) уравнения (3) и (4) определяют у(х) и С(x), как дифференцируемые функции от х, причём С(х) ни в каком интервале рассматриваемых значений х не постоянна, то у = у(х) будет огибающей семейства (2).

Замечание 1. Так как в постановке задачи х и у были совершенно равноправны, то в её решении роли х и у можно поменять.

Замечание 2. Огибающая семейства интегральных линий некоторого дифференциального уравнения 1-го порядка всегда является существенно особой интегральной линией для этого уравнения, так как из каждой её точки по одному направлению выходят по крайней мере две интегральные линии.

Пример 1. На всей плоскости (x, y) дано семейство кривых

(5)

Оно состоит из кубических парабол, полученных из однойсдвигом, параллельным оси .

Приравнивая нулю, получим . Отсюда С = — х. Подставляя это в уравнение семейства, получим линию у = 0, которая, очевидно, является огибающей семейства (5)

Замечание. Если бы мы написали уравнение нашего семейства в виде

то было бы = -1 и наш метод не дал бы огибающей, которая на самом деле существует. Это происходит потому, что теперь не существует при у = 0.

Пример 2. На всей плоскости (х, у) задано семейство кривых

(6)

Приравнивая нулю , получим .

Отсюда С= -x. Подставляя это в уравнение (6), получим у = 0.

Но легко видеть, что ось x-ов не является огибающей семейства (6) (см. рисунок). Это происходит только потому, что при у = 0

Пример 3. Семейство окружности

(7)

покрывает полоску между прямыми х = ±1. Приравнивая нулю , получим 2(у + С) = 0. Отсюда С = -у. Подставляя это вместо С в уравнение семейства, получим х = ±1.

Каждая из этих прямых является огибающей семейства (7) (см. рис.).

Допустим, что точки А и В (см. рисунок) соединены тонкой, абсолютно гладкой, проволокой, форма которой изображается кривой y = f(x). Пусть, далее, вдоль этой кривой свободно скользит некоторый груз под действием силы тяжести. Тогда время, в которое этот груз достигнет точки В, будет зависеть от формы кривой. Существует некоторая кривая, для которой груз достигнет точки В в кратчайшее время.

Эта кривая называется «брахистохроной». Задача состоит в том, чтобы найти форму этой кривой.

Для решения задачи необходимо найти выражение, для количества времени, затрачиваемого на скольжение груза по любой проволоке. Удобнее всего использовать для этого три закона из области механики:

1) Потенциальная энергия груза пропорциональна его высоте над поверхностью земли. Фактор пропорциональности равен массе т, умноженной на ускорение силы тяжести g.

2) Кинетическая энергия движущегося тела пропорциональна квадрату скорости. Фактор пропорциональности равен .

3) Сумма потенциальной и кинетической энергии тела постоянна, если они не сообщают энергии некоторому другому телу, Эго положение носит название «принципа сохранения энергии». В нашей задаче отсутствуют силы трения, и значит груз не теряет энергий при скольжении вдоль проволоки. Поэтому сумма его кинетической энергии и потенциальной энергии mg() есть величина постоянная. Получаем уравнение:

где α—неизвестная постоянная[2] .

Далее, следует отметить, что груз движется все время в направлении касательной к проволоке. Следовательно, v есть скорость, с которой проходится дуга s, . Подставляя это выражение в (1), находим:

Следовательно, время пути представляется интегралом:

Выражая ds через х, получаем:

Это и есть тот интеграл, минимум которого мы должны найти. Пусть y = f(x) есть уравнение искомой кривой, а у = f(х) + ε(х) уравнение соседней кривой. Обозначим время движения вдоль этой последней кривой через t+dt, где

Нужно проинтегрировать член, зависящий от по частям, и принять во внимание, что ε исчезает в концах интервала интеграции. После того, как это будет сделано, подынтегральное выражение сведется к произведению двух множителей. Один из них есть ε, как и ранее, и является произвольным, Так как весь интеграл должен исчезать, то обращается в нуль другой множитель, что приводит к дифференциальному уравнению:

Возможно решить это уравнение после выполнения указанного дифферен- цирования, но оказывается проще сделать это сразу для уравнения (3). Так как процесс интеграции, который мы сейчас применим, оказывается полезным при решении практических задач, то мы проведем его шаг за шагом.

Прежде всего заметим, что уравнение не содержит х. Поэтому заменяем эквивалентным ему символом . Собирая все члены, содержащие , в левую часть, приводим уравнение к виду:

В левой части уравнения выражение, стоящее перед знаком почти равно выражению под знаком . Если бы они вполне совпадали, то левая часть была бы произведением функции на ее производную и интеграл от левой части равнялся бы квадрату этой функции. Умножаем поэтому обе части уравнения на такой фактор, чтобы указанное условие было выполнено.

Очевидно, что этот множитель есть:

В правой части вместо показателя войдет при этом 2. Произведя эту замену, мы тотчас же можем проинтегрировать уравнение. Получим:

Это уравнение легко разрешить относительно ; получим в результате:

Вычисление этого интеграла упрощается, если произвести замену переменного:

при этом интеграл будет равен:

Уравнения (4) и (5) определяют вместе искомую брахистохрону в функции вспомогательной переменной, или «параметра», θ. Если дадим этому параметру частное значение, можем найти значение х из уравнения (5), а соответствующее значение y=f(x) из (4). Очевидно, что давая ряд значений θ, мы получим ряд точек на брахистохроне. Кривая, которая при этом получится, есть циклоида, изображенная на рисунке. Можем исключить θ из уравнений (4) и (5) и получить таким образом кривую в обычной форме:

Но удобнее пользоваться параметрическими уравнениями (4) и (5), вместо этого сложного уравнения.

Задача. Среди гладких кривых, начинающихся в точке (а, А)= (0, 0) и оканчивающихся на прямой x = b > 0, найти кривую наискорейшего спуска.

Решение. Время спуска Т(у) на кривой Y=y(x) определяется интегралом

Лагранжевыми кривыми в данном случае являются циклоиды вида

Условие трансверсальности в данном случае принимает вид

Искомая циклоида должна пересекать прямую х=b ортогонально.

Вершина циклоиды необходимо лежит на прямой х=b.

Задача. Среди гладких кривых Y = y(x), начинающихся в точке (а, А) и оканчивающихся на кривой L с уравнением Y= Ф(x), найти кривую наименьшей длины, т.е. найти расстояние от (а, А) до кривой L.

Решение. Длина s(y) кривой

Y = y(x), y(a) = A, y[ β(λ) ] = Ф[ β, λ ]

s(y)=.

Лагранжевыми кривыми в данном случае являются, очевидно, прямые

.

1 + = 0.

Следовательно, искомая прямая Y = y(x) должна пересекать кривую L ортогонально.

Из проведенных рассуждений также следует, что отрезок наименьшей длины, соединяющей кривые и должен быть ортогональным и к и к .

Рассмотрим точки А и В на поверхности, изображенной на рисунке. Среди всех кривых, которые мы можем провести на этой поверхности из точки А в точку В, существует одна кратчайшая. Она называется геодезической. Эту геодезическую линию мы и будем отыскивать. Один из способов определить эту геодезическую есть определение ее проекции на плоскость ху. Уравнение проекции А’В’ вместе с уравнением поверхности вполне определяют геодезическую линией. Пусть уравнение поверхности есть z = Ф(x, y).

Тогда, если х и у получат приращения dx и dy, то z получит приращение:

Следовательно, для элемента длины дуги ds имеем:

Предположим, что точки А и В соединены произвольной кривой, проекция которой на плоскость ху есть у = у(х). Тогда длина кривой равна:

Минимум этого интеграла мы ищем.

В качестве примера рассмотрим случай параболического цилиндра, изображенного на следующем рисунке; его

z = b

т. е. (1) обращается в

Можно получить из этого интеграла дифференциальное уравнение геодезической линии обычным способом, который был уже подробно разъяснен, так что не стоит этого повторять. Это уравнение будет:

Легко решить это уравнение. Решение дает семейство кривых на поверхности, обладающих тем свойством, что если на какой-нибудь из кривых мы отметим пару точек, то расстояние по этой кривой между этими точками меньше расстояния между ними по любой другой кривой. Если мы хотим найти геодезическую линию, проходящую через две заданные точки, то, выбирая координаты этих заданные точки, точек в качестве граничных значений, можем определить постоянные интеграции в общем решении.

Задача. Определить линию наименьшей длины, соединяющую точки (a, и (b, по поверхности G(x, y, z) = 0.

Решение. Длина пространственной кривой у = у(х), z = z(x), определяется интегралом

s(y, z)=.

Строим функцию Лагранжа:

F*=

Для определения экстремали получаем систему Эйлера

λ = 0

λ = 0

которую следует решать с учетом уравнения связи G = 0 и граничных условий.

Задача. Среди кривых y, соединяющих точки (a, A) и (b, B), где A, B>0, и имеющих заданную длину l, >+,найти такую, чтобы криволинейная трапеция, ограниченная сверху этой кривой, имела наибольшую площадь. Другими словами, найти максимум функционала

s(y)=

при граничных условиях

и изопериметрической связи

=l.

Решение. Вспомогательная функция имеет в данном случае вид

.

Функционал является специальным, ибо не содержит x явно, поэтому вариационное уравнение Эйлера для этого функционала имеет первый интеграл

y-.

Для интегрирования последнего уравнения введем вспомогательный параметр t, пологая . Тогда

И поэтому dx= λ cos t dt или x= λ sin t+

.

.

Экстремалями являются окружности. Постоянные обычным образом определяется из граничных условий и изопериметрической связи.

Задача разрешима, если дуга окружности длины l, соединяющая точки (a, A) и (b, B), не выходит из полосы ax b.

В двух точках и на одном уровне и на расстоянии друг от друга подвешена нить. Требуется найти форму, которую примет эта нить под действием силы тяжести. Пусть кривая на рисунке изображает эту форму, и рассмотрим какой-нибудь элемент длины ds[3] .

Одно из основных предложений механики состоит в том, что этот элемент должен быть в равновесии под действием сил, действующих на него. Эти силы суть:

a) его собственный вес, являющийся силой, действующей вертикально вниз;

b) натяжение нити в нижнем конце, действующее в направлении касательной в этой точке;

c) натяжение нити в верхнем конце, действующее в направлении касательной в этой точке.

Обозначим наклоны касательных в двух концах через — θ и θ + , напряжения — через Т и T + dT и линейный вес[4] нити — через т. Тогда, если три силы разложены на их х- и y- компоненты, мы получим соответственно:

Если элемент нити должен быть в равновесии, под действием этих сил необходимо, чтобы сумма компонент X и сумма компонент У были ну лями, т. е.:

Деля почленно эти уравнения, имеем:

Первое из уравнений (1) утверждает, что горизонтальная компонента натяжения одна и та же в двух концах элемента ds.

Так как элемент ds произвольно выбранный, то отсюда следует, что эта компонента одна и та же в каждой точке кривой[5] . Если обозначим ее через k, то (2) примет вид:

Если мы запишем это последнее в виде

и будем приближать ds и dθ к нулю, то левая часть уравнения обратится в производную tan θ. Итак:

Это и есть дифференциальное уравнение искомой кривой, выраженное, как говорят математики, во внутренней форме, т. е. оно выражает длину s, измеренную, начиная с некоторой точки, в функции наклона касательной. Для многих вопросов, однако, внутренняя форма не очень удобна, и поэтому лучше свести ее к обычной декартовой форме. Для этого нужно произвести замену обеих переменных s и θ на х и у, связанных с первыми соотношениями:

Переменное s исключается, если мы заметим, что

Дифференцируя первое из уравнении (4) по х, мы получаем:

Результат подстановки будет поэтому:

Упростив (5), получаем:

Это и есть дифференциальное уравнение кривой провеса нити, выраженное в функции декартовых координат х и у.

Если две точки А и В (см. рисунок) связаны кривой y = f(x) и вся эта фигура вращается около оси x, то кривая образует при этом поверхность вращения.

Площадь этой поверхности зависит от формы кривой, т. е. от формы функции f(x). Существует кривая, обладающая тем свойством, что ее поверхность вращения имеет наименьшую площадь.

Задача состоит в том, чтобы найти уравнение этой кривой. Так как задача похожа на те задачи анализа, где приходится отыскивать точки максимума или минимума кривой, то полезно напомнить рассуждение, при помощи которого такие задачи решаются. Оно состоит в основном из трех шагов.

1) Абсцисса минимальной точки предполагается сначала известной и обозначается, например, буквой х.

2) Отмечается, что передвижение из точки минимума в любом направлении увеличивает функцию, другими словами, что f(x+ε) и f(xε) больше f(x).

3) Если ε очень мало, то

f(x+ε) f(x)+ε f(x — r) f(x) ε.

Одно из этих выражений больше f(x), а другое меньше, если только f (х) не обращается в нуль. Но в силу 2) этого быть не может, следовательно в точке минимума производная функция должна исчезать.

Конечно, этого одного недостаточно. Напомним, что условие 3) необходимо также для максимума, и до тех пор пока мы не рассмотрели вторую произ-водную, нельзя узнать, что именно мы получили.

Однако это все, что нужно для наших целей.

Мы решим нашу задачу путем совершенно аналогичным.

1) Предполагаем, что искомая кривая известна и что ее уравнение есть

2) Если будем менять форму кривой произвольно, то площадь поверхности вращения должна при этом увеличиваться. Если обозначить разность между ординатами новой и старой кривых через ε(x), то новое уравнение будет:

3) Можно показать, что если некоторое дифференциальное выражение не равно нулю, то площадь, описанная кривой f(х)+ε(х), будет больше площади, описанной кривой f(x), а площадь, описанная кривой f(х) ε(x), будет меньше этой последней. Отсюда дифференциальное выражение должно исчезать. Это приводит к дифференциальному уравнению, решение которого определяет искомую кривую.

После того как мы наметили таким образом нашу задачу, приступим к детальному проведению третьего шага. Прежде всего нужна написать выражение для площади поверхности вращения. Это- простая задача анализа, ответом на которую служит выражение:

Заменим теперь y = f(x) новой кривой

При вращении этой кривой получим площадь:

Если ε есть малое изменение у, и выбрано так, что ε тоже мало, то

Члены, не написанные в (1), содержат степени ε порядка выше первого и могут быть поэтому отброшены. Если dA не равно нулю, то оно меняет знак при изменении знака е. Это означает, что площадь поверхности вращения для новой кривой меньше, чем для самой кривой, что, конечно, противоречит предположению, что она давала наименьшую площадь. Отсюда dA должно обращаться в нуль.

Уравнение (1) является в некотором смысле эквивалентным выражению εf(х) для случая анализа. Однако между ними есть существенная разница. В дифференциальном исчислении ε входит только множителем, и поэтому произведение могло равняться нулю только при исчезновении второго множителя. Для уравнения (1) в этой его форме мы не можем этого утверждать. Оно должно быть так изменено, чтобы исчезло . Прежде всего наш интеграл состоит из двух частей, одна из которых содержит ε, а другая .

Оставляем первый интеграл без изменения, а второй интегрируем по частям:

Так как условия задачи требуют, чтобы каждая интегральная кривая проходила через точки А и В, то ε(х) должно исчезать для обоих пределов интеграции. Поэтому первый член правой части равенства (2) обращается в нуль. Подстановка оставшегося члена в уравнение (1) дает искомое необходимое условие минимума в виде:

Теперь, как в случае дифференциального исчисления εf(x), подинтегральная функция состоит из двух множителей: ε(x), которое произвольно, и выражения в скобках, содержащего только f(x) и ее производные. Так же как и в случае задачи дифференциального исчисления, последние фактор должен обратиться в нуль. Действительно, предположим обратное. Тогда в некоторых интервалах между оно отрицательно, в других положительно. Так как ε(х) произвольная функция[6] , то она может быть выбрана положительной там, где другой множитель отрицателен, и отрицательной в остальных точках. Тогда (3) будет отрицательным и площадь поверхности уменьшится. Итак, мы приходим к заключению, что искомая кривая y = f(x) должна удовлетворять дифференциальному уравнению:

Уравнение это настолько просто, что его решение предоставляем читателю. Следует отметить, что это уравнение второго порядка и поэтому может удовлетворять двум граничным условиям. Так как в задаче даются как раз два граничных условия—точки А и В,—то наш результат вполне соответствует поставленной задаче.

Особенный исторический интерес имеет так называемая задача Дидоны. По преданию, Дидона, попав в немилость своему брату Пигмалиону, собрала все деньги, какие могла, и убежала на южный берег Средиземного моря. Там она заключила сделку с царем Иарбасом на покупку такого количества земли, сколько можно было отмерить при помощи шкуры вола.

С остроумием и хитростью, которых всегда достаточно в мифологии, она разрезала кожу на тонкие ремешки, связала их друг с другом и окружила при помощи их место Карфагена. С характерной для финикиян настойчивостью в достижении поставленной цели, она не соединила концы, а поместила их на берегу моря. Задумав свой блестящий план, она встретилась с задачей, каким образом так расположить ремень, чтобы охватить им наивыгоднейшую часть земли, которая может быть максимальной или нет, в зависимости от обстоятельств.

Задача Дидоны состоит, таким образом, в следующем: задана кривая (берег моря), известна цена земли (изменяющаяся с изменением места); как провести кривую заданной длины, чтобы стоимость площади между этими двумя кривыми была максимальной?

Чтобы иллюстрировать метод изучения изопериметрических задач, решим задачу Дидоны для простейшего случая, именно предположим, что земля имеет всюду одинаковую ценность и что берег моря прямолинейный. Кроме того предположим, что концы веревки помещены в две заданные точки, расстояние между которыми равно X[7] . Задача сводится к определению кривой заданной длины, ограничивающей максимальную площадь.

Следовательно, эта кривая удовлетворяет двум условиям, изложенным на ее длину и на площадь, которую она ограничивает. Выбирая берег моря за ось х и помещая один из концов веревки в начало координат, мы можем записать эти условия в виде равенств:

Первый интеграл имеет заданное значение, второй должен быть сделан наибольшим, путем выбора соответствующей функции f(x).

Пусть искомая кривая, удовлетворяющая поставленным требованиям, имеет уравнение у=f(x), длина ее равна , а ограничиваемая ею площадь равна . Попытаемся применить наш прежний метод и сравним кривую y=f(x) с кривыми у =f(x) ε(x), где ε(х) мало, но в остальном произвольно.

Очевидно, нельзя уже сказать, что + dA — новая площадь дли кривой сравнения — меньше чем . Действительно, кривая сравнения может оказаться длиннее прежней и поэтому заключить большую площадь. Другими словами, наше прежнее рассуждение не годится и мы должны найти новый метод исследования.

Для этой цели рассмотрим вместо кривой Дидоны длины , новую кривую длины + dL, где dL может быть как положительно, так и отрицательно. Предположим, что новая кривая так расположена, что ограничивает максимальную площадь, которая будет больше или меньше , в зависимости от знака dL. Обозначим, наконец, вновь полученную площадь через[8] А + ΔА, а отношение (или предел этого отношения при dL стремящемся к нулю) через λ. Мы можем теперь утверждать, что если мы изменим длину кривой на величину dL, то наибольшая площадь, которую она при этом может ограничивать, будет равна Aо + λ dL.

Вернемся теперь к произвольной кривой сравнения у =f(x) + ε(x), и пусть эта кривая имеет длину L0 + dL, большую, меньшую или равную Lo. Обозначим через Ао + dA площадь, ограниченную этой новой кривой. Какова бы ни была эта площадь, она не может быть больше A0 + λdL, так как по предположению это—максимальная площадь, для кривой длины Lo + dL. Отсюда следует, что

dA λdL,

dA λdL 0.

Это приводит к теореме:

Как бы мы не изменили кривую y = f(x), изменяя ее длину или нет, величина dAλdL никогда не является положительной. Но если dAλdL не положительно, то АλL не может быть больше для новой кривой, чем для прежней. Мы можем, следовательно, высказать полученную теорему в более выразительной форме:

Кривая, для которой величина А наибольшая по сравнению с кривыми той же длины, делает наибольшей величину АλL. по сравнению с кривыми произвольной длины.

Поэтому решить задачу максимума для А с ограничением, что длина кривых сравнения L , равна Lo, — то же самое, что решить задачу максимума для АλL без всяких ограничений на кривые сравнения. Правда, правильное решение задачи получится только в том случае, если λ выбрана правильно, а так как невозможно определить λ, не зная решения задачи, то может показаться, что мы ничего не достигли нашим рассуждением.

Мы увидим, однако, что, предполагая пока λ неизвестной постоянной, мы найдем в дальнейшем способ ее определения. Итак, интеграл, максимум которого требуется найти, есть:

Обычные преобразования приводят к дифференциальному уравнению:

+

Это — уравнение круга, радиуса λ, с центром в точке (α, β). В него входят три произвольных постоянных α, β и λ, но мы имеем три условия для их определения, так как кривая должна проходить через точки (0,0), (X, 0) и должна иметь длину L.

Простейший способ определения постоянных— геометрический. Известно, что центр круга, проходящего через две точки А и В, лежит на перпендикуляре, делящем хорду АВ пополам. Отсюда а равняется . Так как гипотенуза и один из катетов треугольника ADC известны, то легко вычислить другой катет.

Итак, получаем для β значение . Наконец, есть величина угла АС В, измеренного в радианах. Угол ACD равен половине этого угла, и его синус равен

Это дает нам уравнение:

откуда можно определить λ. Уравнение трансцендентное и его нельзя решить алгебраическим методом. Его можно решить приближенно путем догадки или с помощью рядов. Так, например, если L равно 1,25 X, λ оказывается равным , а следовательно, β=-0,234Х. Это как раз тот круг, который изображен на рисунке.

Данная курсовая работа состоит из введения, основной части, заключения и списка использованной литературы.

Целью курсовой работы являться рассмотрение геометрических задач и приведение их к дифференциальным уравнениям.

В ходе выполнения данной курсовой работы мы пришли к тому, что часть дифференциальных уравнений разрешимы явно, а часть уравнений явно неразрешимы.

Таким образом, из вышесказанного можно сделать вывод, что цель курсовой работы достигнута.

1. Арнольд В. И. Обыкновенные дифференциальные уравнения. – М.: Наука, 1984. – 271 с.

2. Богданов Ю. С. Лекции по дифференциальным уравнениям. – Минск: Вышейшая школа, 1977. – 239 с.

3. Еругин Н. П., Штокало И. З., Бондаренко П. С. И др. Курс обыкновенных дифференциальных уравнений. – Киев: Вища школа, 1974. – 471 с.

4. Краснов М. Л. Обыкновенные дифференциальные уравнения. – М.: Высшая школа, 1983. – 128 с.

5. Матвеев Н. М. Дифференциальные уравнения: Учеб. Пособие для студентов пед. ин-тов по физ.-мат. спец. – М.: Просвещение, 1988. – 256 с.

6. Матвеев Н. М. Сборник задач и упражнений по обыкновенным дифференциальным уравнениям. – Минск: Вышейшая школа, 1987. – 319 с.

7. Матвеев Н. М. Методы интегрирования обыкновенных дифференциальных уравнений. – Минск: Вышейшая школа, 1974. – 766 с.

8. Петровский И. Г. Лекции по теории обыкновенных дифференциальных уравнений. – М.: 1952 Ленинград.

9. Понтрягин Л. С. Обыкновенные дифференциальные уравнения. – М.: Наука, 1970. – 331 с.

10. Самойленко А. М., Кривошея С. А., Перестюк Н. А. Дифференциальные уравнения, примеры и задачи. – Киев: Вища школа, 1984. – 408 с.

11. Смирнов М. М. Дифференциальные уравнения в частных производных второго порядка. – М.: Наука, 1964. – 205 с.

12. Тихонов А. Н., Васильева А. Б., Свешников А. Г. Дифференциальные уравнения. – М.: Наука, 1972. – 724 с.

13. Тихонов А. Н., Самарский А. А. Уравнения математической физики. – М.: Наука, 1972. – 724 с.

14. Торнтон Фрай. Элементарный курс дифференциальных уравнений. – М.: 1933 Ленинград.

15. Федорюк М. В. Обыкновенные дифференциальные уравнения. – М.: Наука, 1979. – 352 с.

[1] Предполагаются различными те линии семейства (2), кото­рым соответствуют различные С.

[2] Она зависит от , высоты в точке A, которую мы можем сделать произ­вольной подходящим выбором начала координат.

[3] На самом деле этот элемент есть приращение длины дуги и обозначается в дифференциальном исчислении через Δs. Однако в физических исследованиях, если такое приращение будет стремиться к нулю, пользуются сразу символом диференциала. Это редко приводит к недоразумениям и часто оказывается олез-ным, давая рассуждению большую наглядность.

[4] Т.е. вес на единицу длины.

[5] Это есть, вместе с тем, наименьшее натяжение для точек кривой, а именно — натяжение внизу, где вертикальная компонента натяжения исчезает.

[6] Мы только предполагали ε и очень малыми. Однако и эти ограничения не необходимы и были сделаны только для упрощения рассуждения.

[7] Если точки О и X слишком близки между собой, то может случиться, что придется протягивать веревку под точками берега вне интервала (OX), и инте­гралы в написанной форме не верны. Мы не будем рассматривать этих случаев; мы будем считать у однозначной функции х.

[8] Мы пишем ΔA вместо dA, так как хотим сохранить последний символ для приращения площади при переходе к произвольной кривой.


источники:

http://studizba.com/lectures/47-matematika/791-razlichnye-temy-matematiki/15035-zadachi-privodyaschie-k-differencialnym-uravneniyam.html

http://www.bestreferat.ru/referat-336852.html

Название: Геометрические задачи приводящие к дифференциальным уравнениям
Раздел: Рефераты по математике
Тип: курсовая работа Добавлен 16:51:43 04 января 2011 Похожие работы
Просмотров: 439 Комментариев: 21 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно Скачать