Задачи приводящие к дифференциальным уравнениям кинетика химических реакций

Скорость химической реакции. Дифференциальные уравнения

В настоящее время актуальной является проблема профильного обучения в старших классах. При этом необходима дифференциация в обучении одному и тому же предмету классов различных профилей. Требуется особая подготовка в подборе материала для классов с углубленным изучением математики, учащиеся которых хотят до конца проследить причинно-следственные связи не только в математике, но и в других науках, понять логику химических явлений. Для них часто неприемлемы «театрализованные» уроки.

С одной стороны, школьный курс химии довольно слабо использует математический аппарат, и огромное количество учебного материала носит полуописательный характер. С другой стороны, изучаемая математика иногда кажется ученикам оторванной от жизни, просто тренировкой ума.

Решить эту проблему помогают интегрированные уроки.

Предлагаемый мною материал опробован в классах физико-математического профиля гимназии № 42 г. Барнаула, имеющей сложившиеся традиции в углубленном преподавании математики. Результатом таких уроков является повышение интереса учащихся и к химии, и к математике, а также изменение взглядов учеников на эти науки.

Данный урок можно проводить совместно с учителем математики, или, при достаточной математической подготовке, такой урок может провести один учитель химии.

Эпиграф (записывается на доске, проецируется на экране через кодоскоп или проектор):

– Г-голубчики, – сказал Федор Семионович озадаченно, разобравшись в почерках. – Это же п-проблема Бен Б-бецалеля. К-калиостро же доказал, что она не имеет р-решения.

– Мы сами знаем, что она не имеет решения, – сказал Хунта, немедленно ощетиниваясь. – Мы хотим знать, как ее решать. (А. и Б.Стругацкие, «Понедельник начинается в субботу».)

Цель. Показать большое практическое значение математических операций дифференцирования и интегрирования на примере изучения раздела химии «кинетика химических реакций».

Задачи. Обучающие: повторить и обобщить знания о скорости химической реакции и факторах, влияющих на нее; дать научное понятие скорости химической реакции как дифференциала концентрации от времени и изучить зависимость скорости химической реакции от концентрации («закон действующих масс»); ввести понятие «дифференциальные уравнения» и научить решать простейшие дифференциальные уравнения методом разделения переменных.

Развивающие: повысить интерес к химии и математике; развивать умение находить причинно-следственные связи; стимулировать самостоятельное изучение отдельных разделов химии и математики.

Подготовительная работа учащихся. Самостоятельно повторить материал по следующим темам: «Скорость химической реакции и факторы, влияющие на нее», «Дифференциальное и интегральное исчисления».

Оборудование. Кодоскоп или проектор для демонстраций рисунков и схем.

Вступительная часть

Учитель. На сегодняшнем уроке мы продолжим изучение химических реакций, их протекание во времени. Раздел химии, изучающий протекание реакций во времени, называется химической кинетикой. Наверное, в химии нет другого раздела, где так широко используется математический аппарат. Вы увидите практическое применение ваших теоретических знаний по дифференциальному и интегральному исчислению. Также на примерах из химической кинетики вы познакомитесь с дифференциальными уравнениями и одним из приемов их решения.

Основная часть

Учитель. Что такое скорость вообще и скорость химической реакции в частности? В чем различие протекания гомогенных и гетерогенных реакций? Как будет выглядеть математическое выражение скорости химической реакции для гомогенной реакции?

Ученики повторяют и обобщают имеющиеся знания по теме, в том числе формулу:

Учитель. Поскольку условия протекания химической реакции постоянно изменяются (уменьшаются концентрации исходных веществ и др.), скорость химической реакции также непрерывно изменяется (рис. 1).

Рис. 1. Пример зависимости
скоростихимической реакции от времени

Следовательно, по формуле 1 можно найти лишь среднюю скорость химической реакции ср. А как найти скорость химической реакции в какой-либо момент времени?

Ученик. Уменьшать рассматриваемый промежуток времени, причем чем он меньше, тем точнее вычисляется скорость.

Учащиеся делают вывод, что скорость химической реакции – это производная концентрации по времени:

Учитель. Рассмотрим, как протекает химическая реакция. Что нужно, чтобы она произошла?

Ученик. Необходимы столкновения молекул и достаточная для реагирования энергия.

Учитель. Избыточная энергия (по сравнению со средней энергией молекул), необходимая для того, чтобы молекулы вступили в реакцию, называется энергией активации.

Если энергия молекул для взаимодействия недостаточна, то соударение является «упругим» и молекулы разлетаются, как столкнувшиеся упругие шары (рис. 2).

Рис. 2.
Соударения: а – двух медленных молекул, электронные облака не перекрываются, реакция не происходит; б – двух быстрых молекул, атомы тесно сближаются, их электронные облака перекрываются, и это приводит к реакции

Как увеличить скорость химической реакции, исходя из вышеизложенного?

Ученик. Увеличить частоту столкновений молекул. Увеличить энергию молекул.

Учитель. Какие факторы влияют на скорость химической реакции?

Повторение и обобщение имеющихся знаний учеников по теме.

Ученик. На скорость химической реакции влияют:

– природа реагирующих веществ (вещества имеют разные энергии активации);

– концентрации реагирующих веществ или площадь соприкосновения реагирующих веществ (изменяется частота столкновений молекул);

– температура (изменяется число молекул с энергией, равной или большей энергии активации и, в меньшей степени, изменяется частота столкновений молекул);

– наличие других веществ (катализаторов и ингибиторов).

Учитель. Причины влияния других веществ мы рассмотрим на следующих уроках. Зависимость скорости химической реакции от температуры установил голландский ученый Вант-Гофф. Его уравнение получило название правило Вант-Гоффа:

При увеличении температуры на 10° скорость химической реакции увеличивается в 2–4 раза.

Температурный коэффициент обозначим буквой = 2–4.

Учащиеся самостоятельно выводят уравнение:

Учитель. Рассмотрим подробно зависимость скорости химической реакции от концентрации. Химическая реакция реализуется как совокупность множества отдельных актов химического превращения. Одинаковые акты составляют элементарную реакцию. Для элементарной реакции

скорость химической реакции прямо пропорциональна концентрациям исходных веществ А и В.

= kсАсB.

Зависимость скорости химической реакции от концентрации называется законом действующих масс.

Учащиеся сами записывают уравнение скорости элементарной реакции А —> С + … .

Учитель. Для элементарной реакции

скорость химической реакции прямо пропорциональна концентрации исходного вещества А:

= kсА.

Учащиеся сами выводят уравнения скоростей следующих химических реакций.

Реакция:

= kсАсА = kс 2 А.

Реакция:

= kсB .

Учитель. Применим наши знания на практике.

Задача. Разложение органического вещества фенилдиазонийхлорида протекает в одну стадию:

Запишем ее в виде:

Такие реакции называются реакциями первого порядка. Скорость этой химической реакции равна:

Минус перед дробью появляется потому, что в числителе находится концентрация исходного вещества, которая уменьшается по мере протекания реакции.

Записываем уравнение зависимости скорости этой реакции от концентрации исходного вещества:

= kсА ,

Уравнения такого вида называются дифференциальными уравнениями.

Пусть в первоначальный момент времени (t = 0) концентрация вещества А сА = с0. Найти концентрацию вещества А (с) в любой момент времени (t) при постоянной температуре.

Уравнения такого вида можно решить разделением переменных и последующим интегрированием.

Учитель решает вместе с учениками задачу, опираясь на их знания по математике.

Учитель. Преобразуем уравнение 2:

Интегрируем полученное уравнение:

Ученики самостоятельно проводят интегрирование, учитель при необходимости корректирует:

Учитель. Рассмотрим полученную зависимость. Из нее следует, что концентрация исходного вещества приблизится к нулю по прошествии неопределенно длительного промежутка времени. Аналогичную зависимость имеют реакции ядерного распада.

Большинство элементарных реакций имеют вид:

Такие реакции называются реакциями второго порядка. Скорость этой химической реакции равна производной концентрации любого из веществ, участвующих в реакции, от времени:

Записываем уравнение зависимости скорости этой реакции от концентраций исходных веществ:

= kсАсB.

Рассмотрим простейший случай, когда концентрации веществ А и В в течение всей реакции равны, т.е. сА = сB .

Пусть в первоначальный момент времени t = 0 концентрации веществ А и В равны сА = сB = с0 .

Задача (для самостоятельного решения).

Найти концентрации с веществ А и В в рассматриваемой реакции в любой момент времени t при постоянной температуре.

Рассуждения и решение учеников:

Учитель. Однако обычно зависимость концентрации от времени для реакций второго порядка представляют в виде формулы 3.

Задача (для самостоятельного решения). Время, необходимое для израсходования половины вещества, называют полупериодом реакции t1/2. Докажите, что для реакций первого порядка (в том числе и для реакций ядерного распада) он не зависит от начальной концентрации.

Рассуждения и решение учеников:

Учитель. Для ядерных реакций полупериод реакции распада t1/2 называют несколько по-другому – период полураспада, и он также не зависит от исходной массы радиоактивного вещества.

Задача (для домашней работы). Период полураспада радия 1590 лет. Сколько времени потребуется, чтобы активность радиевого препарата составила 10 % от начальной?

Заключительная часть (рефлексия)

Учитель. Таким образом, сегодня на уроке мы не только обобщили и углубили знания по теме «Скорость химической реакции», но и познакомились с дифференциальными уравнениями, способом их решения, а также показали огромное практическое значение математических понятий при изучении химии. Современная «настоящая» наука обязательно оперирует цифрами, привлекая серьезный математический аппарат.

Я надеюсь, что сегодняшний урок изменит ваши взгляды на химию, а также на математику. Многие считают ее наукой, изучающей саму себя ради себя. Теперь же вы видите, что математика жизненно необходима для существования и развития других наук.

Я очень хочу услышать ваше мнение об этом уроке.

Учащиеся высказывают свои мнения и обсуждают их.

Р е к о м е н д у е м а я л и т е р а т у р а

Ремсден Э.Н. Начала современной химии: Справочное издание. Пер. с англ. под ред. В.И.Барановского и др. Л.: Химия. Ленингр. отд-ние, 1989; Зайцев О.С. Учебная книга по химии (главы 1, 2, 3). Химия (ИД «Первое сентября»), 2002, №№ 4–14, 16–28, 30–34, 37–44; Кузнецова Н.Е., Литвинова Т.И., Левкин А.Н. Химия. Учебник для 11 класса общеобразовательных учреждений (профильный уровень). В 2 ч. М.: Вентана-Граф, 2006; Мордкович А.Г. Алгебра и начала анализа. 10–11 классы. В 2 ч. М.: Мнемозина, 2003; Глазунов А.Т., Кабардин О.Ф., Малинин А.Н. Физика. 11 класс. М.: Просвещение, 2001.

Задачи приводящие к дифференциальным уравнениям кинетика химических реакций

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО

ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО

«БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра математического анализа

Физические задачи, приводящие к дифференциальным уравнениям

Выполнила: студентка 2 курса

Научный руководитель: к.ф.-м.н.,

доцент Сабитова Ю.К.

1. Электрические цепи

2. Распространение тепла

3. Построение ортогонального семейства кривых

4. Уравнение химической кинетики

5. Реактивное движение

6. Из пушки на Луну

7. Форма равновесия жидкости во вращающемся сосуде

8. Фокусирующее зеркало

10. Уравнение струны

В настоящее время складываются основы новой методологии научных исследований — математического моделирования.

Сущность этого исследования состоит в замене исходного объекта математической моделью, и решения поставленной задачи с помощью современных вычислительных средств.

Моделирование — это метод исследования каких-либо процессов, явлений, который предполагает создание искусственных или естественных систем, имитирующих существенные свойства оригинала.

Математическое моделирование в настоящий момент является одной из главных составляющих научно-технического прогресса. Без применения этой методологии не реализуется ни один крупномасштабный технологический, социальный, экологический проект.

В частности, в качестве математических моделей реальных процессов могут быть использованы дифференциальные уравнения. Довольно часто при изучении многих процессов, протекающих в природе, бывает довольно сложно установить зависимость между функциями, характеризующими те или иные величины. Но зато в некоторых случаях возможно установить связь между теми же функциями и их производными. Это приводит к уравнениям, содержащим неизвестные функции под знаком производной, то есть к дифференциальным уравнениям (с их помощью процесс может быть описан проще и полнее). Отрасль математического анализа, изучающая дифференциальные уравнения, является одной из самых важных по своим положениям.

Эффективность использования дифференциальных уравнений в качестве математических моделей обеспечивается историческими истоками самих дифференциальных уравнений и современными взглядами на многие законы природы с позиции дифференциальных уравнений, приложениями дифференциальных уравнений в современной науке и технике, развитием методов интегрирования и общей теории дифференциальных уравнений, высоким уровнем вычислительной математики и техники.

В различных областях человеческой деятельности возникает большое число задач, решение которых сводиться к дифференциальным уравнениям. Например, происходит какой-либо физический, химический или биологический процесс. Зачастую закономерности данного явления можно описать при помощи дифференциальных уравнений.

Тема курсовой работы обуславливает преимущественное рассмотрение физических процессов. Например, закон изменения температуры, давления или массы с течением времени. Если имеется достаточно полная информация о течении данного процесса, то строят его математическую модель. Во многих случаях такой моделью является дифференциальное уравнение, находят все его решения и выделяют то решение, для которого выполняются дополнительные (начальные или граничные) условия.

Надо отметить, что разные по содержанию задачи приводятся к одинаковым или исходным дифференциальным уравнениям.

Цель курсовой работы: изучение физических задач, приводящих к дифференциальным уравнениям.

Рассмотреть физические задачи, приводящие к дифференциальным уравнениям;

Анализ практичности решения физических задач, приводящих к дифференциальным уравнениям.

1. Электрические цепи

Электрические цепи описываются двумя величинами: током I и падением напряжения ?U . При этом для различных элементов цепи соотношения между током и напряжением различны:

конденсатор, — его емкость,

Сумма падений напряжения на всех участках цепи равна ЭДС этой цепи (тому напряжению, которое подается в цепь извне). Получаем уравнение:

Величины L,R,C нам, как правило, известны — это характеристики эле-
ментов цепи, E(t) — заданная функция. Остается две величины: I и Q.
Но, поэтому уравнения электрического тока в цепи обычно записывают относительно неизвестной функции — заряда на обкладках конденсатора:

Все знают, что более холодное тело (или часть тела) нагревается от более горячего. Каков закон этого процесса? Чтобы выяснить это, необходимо понять, что и как описывает тепловые процессы.

Во-первых, это температура. Температура может измеряться по разным шкалам, но нас интересует не абсолютная величина температуры, а ее изменение (со временем или при переходе от одной точки тела к другой). Температуру обычно обозначают буквой T.

Во-вторых, изменение температуры связано с изменением энергии тела, причем зависимость эта линейная. Для того чтобы различать температуру и энергию, для последней введено специальное название количество теплоты (обозначается обычно Q). Таким образом, Коэффициент С называют теплоемкостью. Он зависит как от материала, из которого сделано тело, так и от его размеров (чтобы нагреть большое тело надо больше тепла). Простые соображения показывают, что для однородного материала С = M/с, где М — масса, с — удельная (на единицу массы) теплоемкость.

Если мы мысленно разобьем тело на две или несколько частей, то количество теплоты, необходимое для нагревания всего тела на 1 градус, равно сумме количеств теплоты, необходимых для нагревания его частей. Количество теплоты оказывается аддитивной функцией множества (при складывании частей в одной целое соответствующие количества теплоты складываются). Однородность означает, что одинаковые (по форме) куски нагреваются одинаково, в какой бы части тела они не находились. Другими словами, эта функция множества инвариантна относительно сдвигов и поворотов. И, наконец, множества с нулевой массой не могут поглощать тепла — это свойство типа непрерывности (если говорить точно, оно называется абсолютной непрерывностью функции множества относительно другой функции — в данном случае массы). Всякая абсолютно непрерывная функция множества, инвариантная относительно сдвигов, пропорциональна в одномерном случае — длине, в двумерном — площади, а в трехмерном — объему множества (или, что то же самое, его массе).

В случае неоднородного тела зависимость Q от Т более сложная и выражается через интеграл

где — количество теплоты, поглощенное объемом V, р(х), с(х) и Т(х)- распределение, соответственно, плотности, удельной теплоемкости и изменения температуры внутри объема.

Далее опишем процесс теплопередачи.

Для этого представим себе обыкновенный кирпич, одна стенка которою имеет температуру Т1, а противоположная — температуру Т2. Если поддерживать температуры стенок постоянными, то, в конце концов, внутри кирпича температура распределится по убыванию от одной стенки к другой.

Практический опыт, с одной стороны, и соображения подобия, с другой, показывают, что это убывание линейно:

В формуле (2) L — расстояние между стенками кирпича, l — «текущая» координата (l = 0 соответствует первой стенке с температурой Т1 , l=L — второй с температурой Т2). Что при этом происходите количеством теплоты? Тепло передается от более горячей стенки к менее горячей, однако для каждого внутреннего «среза» кирпича количество теплоты, приходящей с одной стороны, и количество теплоты, уходящей в другую, совпадают, поскольку процесс установившийся. Это количество теплоты называют тепловым потоком через соответствующий срез и обозначают той же буквой Q, что и количество теплоты.

Рис.1. Тепло передается от более горячей стенке к менее горячей

Тепловой поток зависит от:

разницы температур на стенках кирпича (чем она больше, тем интенсивней идет теплообмен);

расстояния между стенками (чем они ближе друг к другу,
тем интенсивней теплообмен); на самом деле он не зависит ни от того, ни от другого. Чтобы убедиться в этом, совершим следующий мысленный эксперимент. Пусть нас интересует, например, срез, находящийся в левой части кирпича. Распилим кирпич пополам (напомним, в середине кирпич имеет температуру ) и выбросим правую половину, а на сделанном распиле просто будем поддерживать ту же температуру. Что изменится

Рис.2. Распилим кирпич пополам

с точки зрения нашего среза? Да ничего. Тепловой поток, проходящий через него, будет в точности таким же, как и в нераспиленном кирпиче. Дальше мы можем повторить процедуру, отпилив еще один кусок кирпича, и так продолжать дальше и дальше. В итоге получаем, что на самом деле тепловой поток зависит не от разности температур, и не от расстояния между стенками, а от той самой константы, которая фигурировала у нас в формуле (2), и, которая как раз и выражается, в случае однородного тела, через отношение разности температур и расстояния, а в случае неоднородного тела — через производную по направлению нормали к нашему срезу;

г)тепловой поток пропорционален площади среза. Если
мы возьмем кирпич вдвое шире (или просто сложим два кирпича), то
тепловой поток удвоится. Здесь опять срабатывает теория аддитивных
функций множества; д)тепловой поток пропорционален времени, в течение которого он про-
ходил: за 2 часа через тот же срез пройдет вдвое больше тепла, чем за
1 час. Получаем формулу: (3)

Рис.3. Возьмем кирпич вдвое шире

или, если сделать бесконечно малым,

Знак плюс или минус выбирается в зависимости направления нормали к срезу (она ведь может быть направлена как в ту, так и в другую сторону), k — коэффициент, зависящий только от материала, называемый коэффициентом теплопроводности.

Мы не зря так долго говорили о таком банальном объекте, как кирпич. Для неоднородной среды все те же рассуждения повторяются в точности, только с той разницей, что «кирпич» является бесконечно малым (и при этом неоднородностью внутри него можно пренебречь). Формула (4) описывает тепловой поток, протекающий через любую бесконечно малую площадку S любой поверхности в любом теле. Если же мы выделили в произвольном теле некоторый объем V и хотим вычислить тепловой поток, выходящий из этого тела, нам надо проинтегрировать формулу (4) по поверхности S,

Обыкновенные дифференциальные уравнения возникают из формулы (5) при наличии в процессе распространения тепла какой-то симметрии. Тогда за счет подходящего выбора системы поверхностей «расслаивающей» тело на пласты с одинаковой температурой, удается описать процесс обыкновенным дифференциальным уравнением.

Возьмем тот же кирпич: в нем зависит только от одной координаты (например, ). Тогда, выбирая в качестве поверхностей

плоскости , получаем, интеграл просто равен этой производной, умноженной на площадь поперечного сечения кирпича с коэффициентом k, и для установившегося процесса теплоотдачи, получаем уравнение

Если наш процесс имеет сферическую симметрию (т.е. температура зависит только от расстояния r от некоторой точки, то, выбирая в качестве

системы поверхностей сферы, получим , интеграл равен

этой производной, умноженной на площадь сферы с коэффициентом k, и мы получаем другое уравнение:

Аналогично в случае цилиндрической симметрии (температура одинакова на цилиндрических поверхностях) получаем еще одно уравнение:

(здесь r — расстояние до общей оси цилиндров, l — длина образующей цилиндров).

Наконец, мы можем из того же уравнения (5) получить и общее уравнение теплопередачи, пригодное для любого тела. Подставив в него связь между изменением количества теплоты и изменением температуры (1) и воспользуемся известной формулой преобразования интеграла по поверхности от нормальной производной функции в интеграл по объему от оператора Лапласа, примененного к этой функции :

Отсюда, пользуясь тем, что справа и слева стоит интеграл по одному и тому же объему, и тем, что это равенство выполнено для любого объема, получаем равенство подынтегральных функций

известное как уравнение теплопроводности.

3. Построение ортогонального семейства кривых

В некоторых задачах физики и механики бывает необходимо по данному семейству кривых построить семейство ортогональных к ним кривых (ортогональность двух кривых в точке их пересечения понимается, естественно, как ортогональность касательных к ним).

Рис.4. Ортогональные семейства кривых

Пусть нам задано семейство, описываемое уравнением с параметром

Для построения ортогонального семейства нам необходимо вычислить касательные к кривым исходного семейства. Пусть у(х) одна из кривых. Тогда Дифференцируя, получаем

Таким образом, угловой коэффициент касательной к кривой семейства, проходящей через точку (х, y), может быть вычислен без знания самой кривой. Но тогда угловой коэффициент касательной к кривой из ортогонального семейства мы тоже можем вычислить (условие ортогональности прямых):

Это и есть уравнение ортогонального семейства. Например, для семейства окружностей получаем уравнение ортогонального семейства кривых: . Решения этого уравнения — семейство прямых у = Сх, действительно ортогональных к окружностям.

. Уравнение химической кинетики

Скорость реакции пропорциональна количеству каждого из реагирующих веществ. Опишем математически химическую реакцию. Пусть имеются два вещества А и Б, и из них в результате реакции образуется вещество X. Количества веществ А, В и X в момент времени t обозначим, соответственно, через и.Тогда

где k — коэффициент пропорциональности. Оказывается, величины а(t) и b(t) можно выразить через x(t): ведь в любой химической реакции количества веществ А и В, необходимых для образования единицы вещества X, строго фиксированы и определяются формулой реакции! Пусть на единицу вещества Х необходимо вещества A и вещества В. Тогда , (здесь , — начальные количества реагирующих веществ), и мы получаем уравнение

Аналогично в случае трех реагирующих веществ и одною на выходе получается уравнение

Уравнения (10) и (11) и называют обычно уравнениями химической кинетики.

Одним из фундаментальных законов физики является закон сохранения импульса: при распаде тела на части сумма импульсов каждой из частей равна импульсу тела до распада. И хоть этот закон обычно представляется связанным с одноактным действием (одно тело единожды распалось), его оказывается разумным использовать и в более сложных процессах, когда от тела последовательно отпадают части, как идеализация этого процесса (когда части очень мелкие и их очень много и интервал между их отпадениями

Рис.5. Закон реактивного движения

очень мал) — когда из тела непрерывно вытекает (вылетает, высыпается) какая-то масса. Именно в такой форме и записывается закон реактивного движения:

или (если, как обычно, обозначать через )

Здесь и соответственно масса и скорость ракеты в момент времени t, V — скорость истечения горючего из ракеты (точнее, это — V: обычно систему координат направляют вдоль движения ракеты, тогда горючее вытекает с отрицательной скоростью, и именно ее обозначают — V, где V — положительное число, равное абсолютной величине мой скорости). Разность — это масса вытекшего горючего, а — V — его скорость в неподвижной системе координат (напомним, что — V — это скорость движения вытекающего горючего относительно ракеты). На самом деле равенство в (12)-(13) не является вполне точным, так как процесс истечения горючего и изменения скорости происходит не «толчком», а непрерывно. Однако если промежуток времени уменьшать, то равенство перейдет в точное равенство отношению дифференциалов

(если предварительно его разделить на ). После несложных преобразований получаем закон реактивного движения

или, через производные,

который иногда записывают в форме:

. Из пушки на Луну

Еще один известный «космический» сюжет: тело (в классической интерпретации — барона Мюнхгаузена) «выстреливается» с Земли в направлении Луны и долетает до нее в свободном полете. Опишем закон полета. Пусть полет происходит по прямой, соединяющей центры Луны и Земли (расстояние между центрами обозначим R), расстояние до летящего тела от центра Земли в момент времени t будет описываться функцией (таким образом, в начальный момент времени , в конечный ). Если масса тела m, то сила притяжения Земли равна

, cила притяжения Луны , и второй закон Ньютона дает нам уравнение полета на Луну:

Рис.6. Полет от Земли до Луны

. Форма равновесия жидкости во вращающемся сосуде

цепь тепло реактивное равновесие жидкость

Пусть у нас есть цилиндрический сосуд, вращающийся вокруг своей оси с угловой скоростью . Поверхность жидкости при этом не остается плоской, а принимает форму поверхности вращения некоторой кривой. Выведем уравнение этой кривой. Для этого воспользуемся тем фактом, что частица, движущаяся по окружности радиуса r с угловой скоростью , должна иметь ускорение, равное направленное к центру окружности. Рассмотрим сечение сосуда плоскостью, проходящей через ось вращения. Пусть независимая переменная описывает расстояние от точки до оси вращения, а — форма поверхности. Изобразим ускорение. Откуда оно взялось? Конечно же, как результат (сумма) различных воздействий. Прежде всего, это — сила тяжести (она дает ускорение , направленное вертикально вниз) и сила упругой реакции самой жидкости (она дает ускорение, направленное по нормали к поверхности). Величина силы реакции и придаваемое ею ускорение нам неизвестны, но, поскольку частицы на поверхности жидкости двигаются в горизонтальной плоскости по окружностям, естественно предполагать, что реакция жидкости «компенсирует» вертикальную тяжесть, и при этом ее горизонтальная

Рис.7. Форма жидкости во вращающемся сосуде

Рис.8. Вид сверху: частица, движущаяся по окружности, должна иметь ускорение, направленное к центру

Рис.8. Вид сбоку (сечение)

составляющая и придает частицам ускорение . Изобразим силы на чертеже:

Чтобы записать соответствующие уравнения, обозначим через В абсолютную величину ускорения, придаваемого частице реакцией жидкости, расположим ось x горизонтально и направим ее вправо, ось у вертикально и направим ее вверх, угол, образуемый касательной к точке кривой у(r) с

Рис.9. Изобразим наши ускорения на чертеже

положительным направлением оси r, обозначим через. Тогда угол между направлением реакции жидкости и положительным направлением оси r равен, вертикальная проекция ускорения реакции жидкости равна, а горизонтальная . Получаем:

откуда, исключая В, получаем

Остается вспомнить, что — это производная и получить уравнение поверхности вращающейся жидкости

8. Фокусирующее зеркало

Пусть у нас есть отражающая поверхность (в плоской интерпретации отражающая кривая), позволяющая отразить параллельный пучок лучей в пучок, сходящийся в одну точку. Постараемся описать эту кривую. Для этого нам понадобится закон отражения лучей, который, для случая плоскости, мы прекрасно знаем (угол падения равен углу отражения), но который, в случае кривой поверхности, мы не сможем сформулировать. Для неплоского случая закон не намного сложнее плоского: луч, падающий в точку х поверхности, отражается от нее так же, как и от плоскости, касающейся в этой точке нашей поверхности.

Запишем задачу в математической форме. Для этого в качестве начала координат удобно взять как раз ту точку, в которую будут собираться лучи, за положительное направление движения лучей и эту ось обозначим через х, другую ось обозначим через у, а функцию, описывающую форму зеркала, — через у(х). Нарисуем траекторию луча, отразившегося в точке нашей кривой, и касательную, проходящую через эту точку. Поскольку до отражения луч шел

Рис.10. Фокусирующее зеркало

горизонтально, угол падения луча совпадает с углом, образованным касательной,

Вычислим угол отражения. Для этого заметим, что в треугольнике МОА (точка А — это точка пересечения касательной с осью абсцисс) угол МО — его внешний угол и он равен сумме двух внутренних, одни из которых — это угол отражения, а другой — угловой коэффициент касательной, то есть опять же. Поскольку угол МО — это угол поворота вектора (х,у(х)), его тангенс равен отношению, откуда получаем

В принципе можно было бы выразить из уравнений (16) и (17) углы и (или их тангенсы) и воспользоваться законом отражения , воспользовавшись тем, что равен , а он, в свою очередь, в силу (16) равен у'(х), подставим их в (17) с раскрытым тангенсом суммы. В результате получается уравнение

являющееся уравнением фокусирующего зеркала. Решение этого уравнения не гипербола, а парабола (а — параметр).

Получаем параболоид вращения (образуемый вращением этой параболы).

Задачу эту относят к классическим задачам математики. Она возникла еще в Древней Греции. Состоит она в том, чтобы определить длину цепи, подвешенной за концы (в античной формулировке эта цепь перегораживала вход в город). Мы несколько расширим задачу и постараемся определить форму цепи (при этом длина ее будет вычисляться по классическим формулам из анализа).

Рис.11. Висящая цепь

Пусть наша цепь описывается функцией у(х), заданной на некотором отрезке [а,b]. Напишем условия для этой функции, при выполнении которых цепь будет находиться в равновесии. Для этого определим действующие на нее силы. Прежде всего — это сила тяжести. На любой участок цепи [х, х+х] она действует с силой, равной

здесь — линейная плотность цени (т.е. масса на единицу длины) в точке — дифференциал дуги кривой. Интеграл, по существу, есть соответствующего участка цепи. Эта сила направлена вниз.

Кроме силы тяжести, на наш участок действуют еще какие-то силы (т.к. цепь находится в равновесии). Это — силы упругой реакции цепи, или силы натяжения. Убедиться в их существовании нетрудно. Представьте себе, что вы «оторвали» этот участок цепи и, растягивая его за концы, стараетесь придать ему ту же форму, которую он имел, находясь внутри цепи. Не надо никого убеждать в том, что этого можно добиться лишь, прикладывая к концам участка силы (причем значительные). Это и есть те самые (имеется в виду величина и направление, а не происхождение) силы, которые действуют внутри висящей цепи. Эти силы всегда направлены по касательной к точке, в которой они приложены. Обозначим величину силы натяжения, приложенной в точке х, через T(х). Теперь мы можем изобразить все на чертеже и записать условия равновесия. Если обозначить

Рис.12. Изобразим все силы на чертеже

через угол, образованный касательной в точке х с положительным направлением оси абсцисс, то горизонтальная составляющая силы натяжения в точке будет равна , а в точке х — соответственно (обратите внимание на знак минус: в точке х сила натяжения действует не вправо, а влево). Поскольку наш участок цепи находится в равновесии, их сумма равна нулю, откуда

где А — константа (параметр задачи). Она может быть определена, например, по величине натяжения в концах цепи: .

Вертикальные составляющие сил натяжения, действующие на наш участок в точках и х, соответственно, равны и — . Сумма этих сил, вместе с силой тяжести, также равна нулю.

Получаем, с учетом (19), следующее уравнение:

или, учитывая, что ,

Разделив на и устремив его к нулю, получим уравнение висящей цепи:

Задача состоит в том, чтобы описать форму струны, натянутой горизонтально за концы и находящейся под воздействием внешней нагрузки.

Эта задача практически идентична предыдущей, роль внешней нагрузки в которой играет тяжесть. Фактически, правая часть (20) — это «сила», действующая на точку х. Мы слово «сила» употребляем в кавычках потому, что это на самом деле не сила, а ее плотность распределения. «Настоящая» сила (та, которая измеряется, например, в ньютонах) на самом деле действует лишь на конечные, имеющие ненулевую длину участки цепи. Если же мы попытаемся найти силу, действующую на точку, то она окажется равной нулю. Воздействие же на одну точку описывается в терминах и равно

. Если через F(x) обозначить силу, действующую на участок струны левее х, то.

В случае висящей цепи . Теперь уже понятен общий вид уравнения деформаций струны:

Мы уже говорили, что это — уравнение равновесия, которое можно

переписать в виде

при этом второе слагаемое — это действие внешних сил, а первое определяется силами упругости. Струна находится в равновесии, значит, их сумма равна нулю. А если сумма не будет равна нулю? Тогда на нашу струну будет действовать сила, и эта сила, по второму закону Ньютона, будет вызывать ускорение. Если обозначить его буквой а, то мы получим уравнение движения:

Чтобы получить уравнение в окончательном виде, нам остается заметить, что, поскольку струна двигается, ее форма меняется с течением времени и описывается функцией не одной, а двух переменных. При фиксированном t — это форма струны (мгновенный снимок), при фиксированном х — закон движения точки с координатой x. То, что раньше было у», теперь станет второй производной функции по пространственной переменной x, а ускорение оказывается просто второй производной по временной переменной t. Добавим еще, что внешнее воздействие может теперь и меняться со временем, т.е. описываться функцией , и мы получили уравнение колебаний струны

Дифференциальные уравнения являются теоретической основой многих моделей, используемых в науке и технике. Такие процессы отражаются в физике, химии, биологии и многих других областях науки. Многие задачи физики приводят к необходимости решения дифференциальных уравнений. Это обусловлено тем, что практически все физические законы, описывающие физические процессы являются дифференциальными уравнениями, относительно некоторых функций, характеризующих эти процессы. Данные физические законы представляют собой теоретическое обобщение многочисленных экспериментов и описывают эволюцию искомых величин в общем случае, как в пространстве, так и во времени. Решение ДУ представляется важной задачей для многих сфер деятельности человека, а также играет важную роль в познании окружающего мира.

Во многих случаях составление дифференциального уравнения основывается на так называемой «линейности процесса в малом», т.е. на дифференцируемости функций, выражающих зависимость величин. Как правило, можно считать, что все существующие в том или ином процессе величины в течение малого промежутка времени изменяются постоянной скоростью. Это позволяет применить известные из физики законы, описывающие равномерно протекающие явления, для составления соотношения между значениями , т.е. величинами, участвующими в процессе, и их приращениями.

Получающееся равенство имеет лишь приближенный характер, поскольку величины меняются даже за короткий промежуток времен неравномерно. Но если разделить обе части получившегося равенства на , то получиться точное равенство. Оно содержит время t, меняющиеся с течением времени физические величины и их производные, т.е. является дифференциальным уравнением, описывающим данное явление. Таким образом, при составлении дифференциального уравнения мы делаем как бы «мгновенный снимок» процесса в данный момент времени.

В курсовой работе рассмотрены различные физические задачи, приводящие к дифференциальным уравнениям. Описаны процессы протекания данных физических явлений и составлены соответствующие дифференциальные уравнения. В основе решения физических задач с помощью дифференциальных уравнений лежит общая идея — линеаризации — замены функций на малых промежутках изменения аргумента линейными функциями.

Аксененко Е.М. Применение дифференциальных уравнений к решению задач: практикум / Е.М. Аксененко, Г.М. Чуванова. — Южно-Сахалинск, изд-во СахГУ, 2013. — 52с.

Боровских А.В., Перов А.И. Лекции по обыкновенным дифференциальным уравнениям. — Москва — Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2004, 540 стр.

Сабитов К.Б. Функциональные, дифференциальные и интегральные уравнения. — М.:Высш. шк., 2005,671с.

Вагапов В.З. Обыкновенные дифференциальные уравнения: учеб.пособие для студ.вузов — Стерлитамак: изд-во СГПА, 2008. 191 с.

Арнольд В.И. Обыкновенные дифференциальные уравнения — Ижевск: Ижевская республиканская типография. 2000. — 386с.

Егоров А.И. Обыкновенные дифференциальные уравнения с приложениями. — 2-е изд., испр. — М.: ФИЗМАТЛИТ, 2005. — 384 с. — ISBN 5-9221-0553-1.

Теги: Физические задачи, приводящие к дифференциальным уравнениям Курсовая работа (теория) Математика

Задачи к разделу Химическая кинетика и равновесие химической реакции

Задача 1. Дайте определение понятию скорость химической реакции. Опишите количественно (где это можно), как влия­ют на скорость реакции внешние условия (концентрация, тем­пература, давление). Рассчитайте, во сколько раз изменится скорость реакции Н2+С12 = 2НС1 при увеличении давления в 2 раза;

Решение.

Скоростью химической реакции u называют число элементарных актов взаимодействия, в единицу времени, в единице объема для гомогенных реакций или на единице поверхности раздела фаз для гетерогенных реакций. Среднюю скорость химической реакции выражают изменением количества вещества n израсходованного или полученного вещества в единице объема V за единицу времени t. Концентрацию выражают в моль/л, а время в минутах, секундах или часах.

где C – концентрация, моль/л

Единица измерения скорости реакции моль/л·с

Если в некоторые моменты времени t1 и t2 концентрации одного из исходных веществ равна с1 и с2, то за промежуток времени Δt = t2 – t1 , Δc = c2 – c1

ῡ = — ΔC/Δt [моль/л·с]

Если вещество расходуется, то ставим знак «-», если накапливается – «+»

Скорость химической реакции зависит от природы реагирующих веществ, концентрации, температуры, присутствия катализаторов, давления (с участием газов), среды (в растворах), интенсивности света (фотохимические реакции).

Зависимость скорости реакции от природы реагирующих веществ. Каждому химическому процессу присуще определенное значение энергии активации Еа. Причем, скорость реакции. тем больше, чем меньше энергия активации.

Скорость зависит от прочности химических связей в исходных веществах. Если эти связи прочные, то Еа велика, например N2 + 3H2 = 2NH3, то скорость взаимодействия мала. Если Еа равна нулю, то реакция протекает практически мгновенно, например:

HCl (раствор) + NaOH (раствор) = NaCl (раствор) + H2O.

Закон действующих масс. Скорость элементарной гомогенной химической реакции прямо пропорциональна произведению концентраций реагентов, взятых в степенях, равных их стехиометрическим коэффициентам.

Для реакции аА + bB = cC + dD

где [A] и [B] – концентрации веществ А и В в моль/л,

k – константа скорости реакции.

Концентрации твердых веществ, в случае гетерогенной реакции в кинетическое уравнение не включают.

Зависимость скорости реакции от концентрации реагирующих веществ определяется законом действующих масс:

Очевидно, что с увеличением концентраций реагирующих веществ, скорость реакции увеличивается, т.к. увеличивается число соударений между участвующими в реакции веществами. Причем, важно учитывать порядок реакции: если реакция имеет первый порядок по некоторому реагенту, то ее скорость прямо пропорциональна концентрации этого вещества. Если реакция имеет второй порядок по какому-либо реагенту, то удвоение его концентрации приведет к росту скорости реакции в 2 2 = 4 раза, а увеличение концентрации в 3 раза ускорит реакцию в 3 2 = 9 раз.

Зависимость скорости от температуры. Правило Вант-Гоффа: Скорость большинства химических реакций при повышении температуры на 10° увеличивается от 2 до 4 раз.

υТ2 – скорость реакции при температуре t2, υТ1 – скорость реакции при температуре t1, γ — температурный коэффициент (γ = 2¸4).

Влияние катализаторов. Катализаторы увеличивают скорость реакции (положительный катализ). Скорость реакции растет, так как уменьшается энергия активации реакции в присутствии катализатора. Уменьшение энергии активации обусловлено тем, что в присутствии катализатора реакция протекает в несколько стадий с образованием промежуточных продуктов, и эти стадии характеризуются малыми значениями энергии активации.

Ингибиторы замедляют скорость реакции (отрицательный катализ).

При увеличении давления в 2 раза концентрация веществ увеличится тоже в 2 раза и скорость реакции станет равна:

υпрям возрастает в 4 раза.

Задача 2. При установлении равновесия Fe2O3 (т) + 3CO (г) = 2Fe (т) + 3CO2 (г) концентрация [CO] = 1 моль/л и [CO2] = 2 моль/л. Вычислите исходную концентрацию [CO]исх, если начальная концентрация CO2 равна нулю.

Решение.

3 моля СО2 образуется, если в реакцию вступают 3 моля СО,

х = 2 моль, ⇒ исходная концентрация [CO]исх = [CO]pавн + 2 моль = 1 + 2 = 3 моль.

Задача 3.Температурный коэффициент реакции равен 2,5. Как изменится ее скорость при охлаждении реакционной смеси от изменения температуры от 50 °С до 30 °С?

Решение.

Воспользуемся правилом Вант-Гоффа

Скорость реакции уменьшится в 6,25 раз

Задача 4. Рассчитайте скорость реакции между растворами хлорида калия и нитрата серебра, концентрации которых составляют соответственно 0,2 и 0,3 моль/л, а k=1,5∙10 -3 л∙моль -1 ∙с -1

Решение.

Скорость прямой реакции равна:

v = 1,5∙10 -3 · 0,2 · 0,3 = 9·10 -5 моль/л·с

Таким образом скорость реакции равна v = 9·10 -5 моль/л·с

Задача 5. Как следует изменить концентрацию кислорода, чтобы скорость гомогенной элементарной реакции: 2 NО(г) +O2(г) → 2 NО2(г) не изменилась при уменьшении концентрации оксида азота (II) в 2 раза?

Решение .

Скорость прямой реакции равна:

При уменьшении концентрации NО в 2 раза скорость прямой реакции станет равной:

т.е. скорость реакции уменьшится в 4 раза:

Чтобы скорость реакции не изменилась концентрацию кислорода надо увеличить в 4 раза.

Задача 6. При увеличении температуры с 30 до 45 о С скорость гомогенной реакции повысилась в 20 раз. Чему равна энергия активации реакции?

Решение.
Применяя уравнение Аррениуса, получим:
ln 20 = Ea/8,31 · (1/303 – 1/318),
отсюда

Ea = 160250 Дж = 160,25 кДж

Задача 7. Константа скорости реакции омыления уксусноэтилового эфира: СН3СООС2Н5(р-р) + КОН(р-р)→СН3СООК (р-р)2Н5ОН(р-р) равна 0,1 л/моль∙мин. Начальная концентрация уксусноэтилового эфира была равна 0,01 моль/л, а щелочи – 0,05 моль/л. Вычислите начальную скорость реакции и в тот момент, когда концентрация эфира станет равной 0,008 моль/л.

Решение.

Скорость прямой реакции равна:

В тот момент, когда концентрация эфира станет равной 0,008 моль/л, его расход составит

Значит, в этот момент щелочи также израсходовалось [КОН]расход = 0,002 моль/л и ее концентрация станет равной

[КОН]кон = 0,05 – 0,002 = 0,048 моль/л

Вычислим скорость реакции в тот момент, когда концентрация эфира станет равной 0,008 моль/л, а щелочи 0,048 моль/л

υкон = 0,1·0,008·0,048 = 3,84·10 -5 моль/л·мин

Задача 8. Как следует изменить объем реакционной смеси системы:
8NH3(г) + 3Br2(ж)→6NH4Br(к) + N2(г), чтобы скорость реакции уменьшилась в 60 раз?

Решение.

Чтобы уменьшить скорость реакции необходимо увеличить объем системы, т.е. уменьшить давление и, тем самым, уменьшить концентрацию газообразного компонента — NH3. Концентрация Br2 при этом останется постоянной.

Начальная скорость прямой реакции была равна:

при увеличении концентрации аммиака скорость прямой реакции стала равной:

После сокращения всех постоянных, получаем

Таким образом, чтобы уменьшить скорость реакции в 60 раз, надо увеличить объем в 1,66 раз.

Задача 9. Как повлияет на выход хлора в системе:
4HCl(г) +O2(г) ↔2Cl2(г) + 2H2О(ж); ΔН о 298 =−202,4кДж
а) повышение температуры; b) уменьшение общего объема смеси; c) уменьшение концентрации кислорода; d) введение катализатора?

Решение.

  1. ΔН о 298 ˂ 0, следовательно, реакция экзотермическая, поэтому, согласно принципу Ле-Шателье, при повышении температуры равновесие сместится в сторону образования исходных веществ (влево), т.е. выход хлора уменьшится.
  2. При уменьшении давления, равновесие смещается в сторону реакции, идущей с увеличением числа молекул газообразных веществ. В данном случае в равновесие смещается сторону образования исходных веществ (влево), т.е. выход хлора также уменьшится.
  3. Уменьшение концентрации кислорода также будет способствовать смещению равновесия влево и уменьшению выхода хлора.
  4. Внесение катализатора в систему приводит к увеличению скорости как прямой, так и обратной реакций. При этом, изменяется скорость достижения состояния равновесия, но при этом константа равновесия не меняется и смещения равновесия не происходит. Выход хлора останется неизменным.

Задача 10. В системе: PCl5 ↔ PCl3 + Cl2
равновесие при 500 о С установилось, когда исходная концентрация PCl5, равная 1 моль/л, уменьшилась до 0,46 моль/л. Найдите значение константы равновесия при указанной температуре.

Решение.

Запишем выражение для константы равновесия:

Найдем количество PCl5, которое расходуется на образование PCl3 и Cl2 и их равновесные концентрации.

Из уравнения реакции:

Из 1 моль PCl5 образуется 1 моль PCl3

Из 0,54 моль PCl5 образуется x моль PCl3

Аналогично, из 1 моль PCl5 образуется 1 моль Cl2

из 0,54 моль PCl5 образуется у моль Cl2

Задача 11. Константа равновесия реакции: СОСl2(г) ↔ СО(г)+С12(г) равна 0,02. Исходная концентрация СОCl2 составила 1,3 моль/л. Рассчитайте равновесную концентрацию Сl2. Какую исходную концентрацию СОCl2 следует взять, чтобы увеличить выход хлора в 3 раза?

Решение.

Запишем выражение для константы равновесия:

Подставим значения в выражение для константы равновесия

Преобразим выражение в квадратное уравнение

х 2 + 0,02х – 0,026 = 0

Решая уравнение, находим

Увеличив выход хлора в 3 раза получим:

Исходная концентрация [СОСl2]исх2 при этом значении Cl2 равна:

[СОСl2]равн2 = 0,45·0,45/0,02 = 10,125 моль/л

[СОСl2]исх2 = 10,125 + 0,45 = 10,575 моль/л

Таким образом, чтобы увеличить выход хлора в 3 раза, исходная концентрация СОCl2 должна быть равна [СОСl2]исх2 = 10,575 моль/л

Задача 12. Равновесие в системе H2(г)+ I2(г)↔ 2HI(г) установилось при следующих концентрациях участников реакции: HI – 0,05 моль/л, водорода и иода – по 0,01 моль/л. Как изменятся концентрации водорода и иода при повышении концентрации HI до 0,08 моль/л?

Решение.

Найдем значение константы равновесия данной реакции:

К = 0,05 2 ̸ 0,01 · 0,01 = 25

При увеличении концентрации HI до 0,08 моль/л, равновесие сместится в сторону образования исходных веществ.

Из уравнения реакции видно, что образуется 2 моль HI, 1 моль H2 и 1 моль I2.

Обозначим новые равновесные концентрации через неизвестную х.

Найдем х с помощью выражения для константы равновесия:

К = (0,08 — 2х) 2 ̸ [(0,01 + х) · (0,01 + х)] = 25

Решая уравнения находим:

Задача 13. Для реакции: FeO(к) + CO(г)↔Fe(к) + CO2(г) константа равновесия при 1000 о С равна 0,5. Начальные концентрации СО и СО2 были соответственно равны 0,05 и 0,01 моль/л. Найдите их равновесные концентрации.

Решение.

Запишем выражение для константы равновесия:

Пусть равновесные концентрации равны:

Подставим значения в выражение для константы равновесия:

Решая уравнение, найдем х:

[СО]равн = 0,05 – 0,01 = 0,04 моль/л [СО2]равн = 0,01 + 0,01 = 0,02 моль/л


источники:

http://dodiplom.ru/ready/128845

http://zadachi-po-khimii.ru/obshaya-himiya/zadachi-2.html