Задачи решаемые через систему уравнений

Решение задач с помощью систем линейных уравнений

Алгоритм решения задачи с помощью системы линейных уравнений

  1. Обозначить неизвестные величины переменными («от смысла к буквам»).
  2. По условию задачи записать уравнения, связывающие обозначенные переменные.
  3. Решить полученную систему уравнений.
  4. Истолковать результат в соответствии с условием задачи («от букв к смыслу»).

Задуманы два числа. Если от первого отнять второе, то получается 10. Если к первому прибавить удвоенное второе, то получается 91. Найдите задуманные числа.

«От смысла к буквам»:

Пусть x и y — задуманные числа.

Уравнения по условию задачи::

Решение системы уравнений:

«От букв к смыслу»:

Задуманы числа 37 и 27.

Примеры

Пример 1. Периметр прямоугольника равен 48 см. Его длина больше ширины в 3 раза.

Найдите стороны прямоугольника.

Пусть a и b — длина и ширина прямоугольника.

$$ <\left\< \begin P = 2(a+b) = 48 \\ a = 3b \end \right.> \Rightarrow <\left\< \begin a+b = 24 \\ a = 3b \end \right.> \Rightarrow <\left\< \begin 3b+b = 24 \\ a = 3b \end \right.> \Rightarrow <\left\< \begin 4b = 24 \\ a = 3b \end \right.> \Rightarrow <\left\< \begin a = 18 \\ b = 6 \end \right.> $$

Ответ: длина прямоугольника 18 см, ширина 6 см.

Пример 2. Два программиста из Бомбея, работающие в одном проекте, написали 100500 строк кода. Первый работал 70 дней, второй – 100 дней. Сколько строк писал каждый программист ежедневно, если за первые 30 дней первый написал на 5550 строк больше, чем второй?

Пусть x — ежедневное количество строк для 1-го программиста, y- для 2-го.

$$ <\left\< \begin 70x+100y = 100500 |:10 \\ 30x-30y = 5550 |:30 \end \right.> (-) \Rightarrow <\left\< \begin 7x+10y = 10050 \\ x-y=185 | \times 10 \end \right.>$$

$$ \Rightarrow (+) <\left\< \begin 7x+10y = 10050 \\ 10x-10y = 1850 \end \right.> \Rightarrow <\left\< \begin 17x = 11900 \\ y = x-185 \end \right.> \Rightarrow <\left\< \begin x = 700 \\ y = 515 \end \right.> $$

Ответ: 700 строк и 515 строк

Пример 3. За 2 кг конфет и 3 кг печенья заплатили 1540 руб. Сколько стоит 1 кг конфет и 1 кг печенья, если 2 кг печенья дороже 1 кг конфет на 210 руб.?

Пусть x — цена за 1 кг конфет, y — за 1 кг печенья.

$$ <\left\< \begin 2x+3y = 1540 \\ 2y-x = 210 | \times 2 \end \right.> \Rightarrow (+) <\left\< \begin 2x+3y = 1540 \\ -2x+4y = 420 \end \right.> \Rightarrow <\left\< \begin 7y = 1960 \\ x = 2y-210 \end \right.> \Rightarrow <\left\< \begin x = 350 \\ y = 280 \end \right.> $$

Ответ: 1 кг конфет — 350 руб. и 1 кг печенья — 280 руб.

Пример 4. Катер за 3 ч движения против течения реки и 2 часа по течению проходит 73 км. Найдите собственную скорость катера и скорость течения, если за 4 ч движения по течению катер проходит на 29 км больше, чем за 3 ч движения против течения.

Пусть v — скорость катера (км/ч), u — скорость течения (км/ч).

$$ \Rightarrow <\left\< \begin 5v-u = 73 \\ v+7u = 29 \end \right.> \Rightarrow <\left\< \begin 5(29-7u)-u = 73 \\ v = 29-7u \end \right.> \Rightarrow <\left\< \begin 145-35u-u = 73 \\ v = 29-7u \end \right.> \Rightarrow$$

Ответ: скорость катера 15 км/ч и скорость течения 2 км/ч

Пример 5. 5 карандашей и 3 тетрадки вместе стоили 170 руб. После того, как карандаши подешевели на 20%, а тетрадки подорожали на 30%, за 3 карандаша и 5 тетрадок заплатили 284 руб. Найдите первоначальную цену карандаша и тетрадки.

Пусть x – первоначальная цена карандаша, y — тетрадки.

$$ <\left\< \begin 5x+3y = 170 \\ 3\cdot0,8x+5\cdot1,3y = 284 \end \right.> \Rightarrow <\left\< \begin 5x+3y = 170 |\times \frac<2,4> <5>\\ 2,4x+6,5y = 284 \end \right.> \Rightarrow (-) <\left\< \begin 2,4x+1,44y = 81,6 \\ 2,4x+6,5y = 284 \end \right.> $$

Ответ: карандаш сначала стоил 10 руб., тетрадка — 40 руб.

Пример 6*. Велосипедист планирует добраться из пункта А в пункт В. Если он будет ехать на 3 км/ч быстрее, чем обычно, он доберётся на 1 час раньше. А если он будет ехать на 2 км/ч медленней, чем обычно, то – на 1 час позже. Найдите обычную скорость велосипедиста и время поездки при этой скорости.

Пусть v – обычная скорость велосипедиста (км/ч), t — обычное время (ч).

Расстояние между А и В неизменно, и по условию равно:

Ответ: обычная скорость 12 км/ч, время 5 ч

Пример 7*. В одной бочке налито 12 л, во второй – 32 л. Если первую бочку доверху наполнить водой из второй, то вторая бочка будет наполнена ровно наполовину своего объёма. Если вторую бочку доверху наполнить водой из первой, то первая бочка будет наполнена на 1/6 своего объёма. Найдите объём каждой бочки.

Пусть x — объём первой бочки (л), y – объём второй (л).

Пусть a л перелито из второй бочки, и первая наполнилась до краёв, а во второй воды осталось наполовину:

Теперь пусть b л перелито из первой бочки, и вторая наполнилась до краёв, а в первой воды осталось на 1/6:

$$ <\left\< \begin x+ \frac<1> <2>y = 44 | \times 2 \\ \frac<1> <6>x+y = 44 \end \right.> \Rightarrow (-) <\left\< \begin 2x+y = 88 \\ \frac<1> <6>x+y = 44 \end \right.> \Rightarrow (+) <\left\< \begin 1\frac<5> <6>x = 44 \\ y = 88-2x \end \right.> \Rightarrow $$

Ответ: первая бочка 24 л, вторая – 40 л

Пример 8*. Если школьник едет в школу на автобусе, а возвращается домой пешком, то он тратит на всю дорогу полтора часа. Если он едет туда и обратно на автобусе, то он тратит полчаса. Сколько времени потратит школьник, если он пойдёт туда и обратно пешком?

Пусть s — расстояние между домом и школой, v — скорость автобуса, u — скорость школьника, t — искомое время, потраченное на дорогу туда и обратно пешком.

По условию задачи:

Из второго уравнения $ \frac = \frac<0,5> <2>= 0,25 $. Подставляем в первое уравнение:

И тогда искомое время:

$$ t = \frac<2s> = 2\cdot1,25 = 2,5 (ч) $$

Алгоритмы решения задач с помощью систем уравнений

Разделы: Математика

Объяснительная записка.

В курсе алгебры 9 класса отводится всего 4 часа на решение задач с помощью систем уравнений второй степени. Это задачи на движение, совместную работу и задачи с геометрическим содержанием. Мне захотелось расширить тематику задач, и на факультативе по алгебре я предложила учащимся задачи, которые не включены в учебник. Для каждого из рассматриваемых типов задач я предлагаю алгоритм решения. Уважаемые коллеги, быть может, это покажется интересным и вам.

Алгоритм решения задач на совместную работу.

  1. Принимаем всю работу, которую необходимо выполнить за 1.
    Находим производительность труда каждого рабочего в отдельности, т.е. , где t – время, за которое этот рабочий может выполнить всю работу, работая отдельно.
  2. Находим ту часть всей работы, которую выполняет каждый рабочий отдельно за то время, которое он работал.
  3. Составляем уравнение, приравнивая объем всей работы к сумме слагаемых, каждое из которых есть часть всей работы, выполненная отдельно каждым из рабочих.

Один комбайнер может убрать урожай пшеницы с участка на 24 ч быстрее, чем другой. При совместной работе они закончат уборку урожая за 35 часов. Сколько времени потребуется каждому комбайнеру, чтобы одному убрать урожай?

1. Принимаем площадь участка, с которого необходимо собрать урожай, за 1.

2. Пусть х – время, необходимое первому комбайнеру для уборки всего урожая, у — время, необходимое второму
комбайнеру для уборки всего урожая. Тогда– производительность первого комбайнера, – производительность второго комбайнера.
3. 35 – часть участка, с которого может убрать урожай первый комбайнер за 35 часов работы, 35 – часть участка, с которого может убрать урожай второй комбайнер за 35 часов работы.

4.Составим систему уравнений:

у = 60, х = 84
Ответ: для уборки всего урожая первому комбайнеру потребуется 84 часа, второму – 60 часов.

Две бригады, работая совместно, могут выполнить некоторое задание за 3 ч 36 мин. Сколько времени затратит на выполнение этого задания каждая бригада, работая в отдельности, если известно, что первой бригаде требуется для этого на 3 часа больше времени, чем второй.

Мастер и ученик должны были выполнить некоторое задание. После четырех дней совместной работы ученик был переведен в другой цех, и, чтобы закончить выполнение задания, мастеру пришлось еще 2 дня работать одному. За сколько дней мог бы выполнить каждый из них это задание, если известно, что мастеру для этого требуется на 3 дня меньше, чем ученику?

Алгоритм решения задач, в которых используется формула двузначного числа.

  1. Вводится обозначение:
    х – цифра десятков
    у – цифра единиц
  2. Искомое двузначное число 10х + у
  3. Составить систему уравнений

Двузначное число в четыре раза больше суммы его цифр. Если к этому числу прибавить произведение его цифр, то получится 32. Найдите это двузначное число.

Х – цифра десятков. У – цифра единиц. 10х + у – искомое число.

2х 2 + 12х – 32 =0

х1 =-8 (посторонний корень) х2 =2, тогда у =4.

Задача №2.
Двузначное число в трое больше суммы его цифр. Если из этого числа вычесть произведение его цифр, то получится 13. Найдите это двузначное число. (27).

Задача №3.
Двузначное число в шесть раз больше суммы его цифр. Если это число сложить с произведением его цифр, то получится 74. Найдите это число.(54).

Задача №4.
Сумма квадратов цифр двузначного числа равна 13. Если от этого числа отнять 9, то получим число, записанное теми же цифрами, но в обратном порядке. Найти число.(32).

Задача №5.
Произведение цифр двузначного числа в три раза меньше самого числа. Если к искомому числу прибавить 18, то получится число, написанное теми же цифрами, но в обратном порядке. Найти это число.

Алгоритм решения задач на смеси.

х – масса первого раствора, у – масса второго раствора, (х + у ) – масса полученной смеси.

Найти содержание растворенного вещества в растворах, т.е.
а % от х, в % от у, с % от (х+у)

Составить систему уравнений.

Задача №1
Смешали 30% -ный раствор соляной кислоты с 10% -ным и получили 600г 15% -ого раствора. Сколько граммов каждого раствора было взято?

Введем обозначение. Пусть взяли х г первого раствора, у г – второго раствора, тогда масса третьего раствора – (х+у).

Определим количество растворенного вещества в первом, втором, третьем растворах, т.е. найдем 30% от х, 10% от у, 15% от 600.

Составим систему уравнений:


0,3х + 60 – 0,1х = 90
0,2х = 30
х = 30:0,2
х = 150, у = 600 – 150 = 450
Ответ: взяли 150 г первого раствора и 450 г второго раствора.

Задача №2
Имеется лом стали двух сортов с содержанием никеля 5% и 40%. Сколько нужно взять металла каждого их этих сортов, чтобы получить 140 т стали с содержанием 30% никеля?

Задача №3
Смешали 10% -ный и 25% -ный растворы соли и получили 3 кг 20% -ного раствора. Какое количество каждого раствора в килограммах было использовано?

Литература:

1. В.С. Крамор. Повторяем и систематизируем школьный курс алгебры и начал анализа. “ Просвещение”.
2. М.Б.Миндюк, Н.Г. Миндюк. Разноуровневые дидактические материалы по алгебре. 9 класс. “Генжер”.

3. М.И. Сканави. Сборник задач по математике для поступающих во втузы. “ Высшая школа”.

4. М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич. Сборник задач по алгебре.

Задачи решаемые через систему уравнений

При решении задачи с помощью системы уравнений сначала обозначают буквами неизвестные числа. Затем составляют систему уравнений, решают ее и, наконец, истолковывают полученный результат в соответствии с условием задачи.

Задача 1. Для клуба приобрели 5 комплектов шахмат и 8 комплектов шашек на сумму 55р. Сколько стоит один комплект шахмат и сколько один комплект шашек, если известно, что 3 комплекта шахмат на 2 р. 20 к. дороже, чем 4 комплекта шашек?

Решение. Пусть один комплект шахмат стоит х рублей, а один комплект шашек у рублей. Тогда 5 комплектов шахмат и 8 комплектов шашек стоят рублей. Так как за всю покупку заплатили 55 р., то

По условию задачи 3 комплекта шахмат дороже 4 комплектов шашек на 2 р. 20 к. Отсюда получаем второе уравнение:

Чтобы ответить на вопрос задачи, надо найти такие значения х и у, которые удовлетворяют как первому, так и второму уравнениям, т. е. удовлетворяют системе:

Решим полученную систему. Умножим обе части второго уравнения на 2:

Сложим уравнения почленно:

Подставим в уравнение вместо х число 5,4:

Пара х = 5,4, у = 3,5 — решение системы.

Ответ: комплект шахмат стоит 5 р. 40 к., а комплект шашек — 3 р. 50 к.

Задача 2. Требуется разложить 163 шара в два ящика так, чтобы в одном из них шаров оказалось в 2 раза больше, чем в другом. Сколько шаров надо положить в каждый ящик?

Решение. Пусть в один ящик положили х шаров, а в другой у шаров. Тогда в соответствии с условием задачи . Мы получили систему:

Решив ее, найдем, что

По смыслу задачи значения х и у должны быть натуральными числами, а мы получили дробные числа.

Ответ: разложить шары таким образом нельзя.


источники:

http://urok.1sept.ru/articles/311796

http://forkettle.ru/vidioteka/estestvoznanie/matematika/181-algebra/algebra-7-9-klassy/1880-algebra-7-9-klassy-12-primery-resheniya-sistem-linejnykh-uravnenij-s-dvumya-neizvestnymi