Задачи решаемые уравнением с дробями

Решение задач с помощью дробных рациональных уравнений табличным методом

Разделы: Математика

Математика в наши дни проникает во все сферы жизни. Овладение практически любой профессией требует тех или иных знаний по математике. Особое значение в этом смысле имеет умение смоделировать математически определённые реальные ситуации. Данное умение интегрирует в себе разнообразные специальные умения, адекватные отдельным элементам математических знаний, их системам, а также различные мыслительные приёмы, характеризующие культуру мышления.

В школьной математике знакомство с математическим моделированием основано, прежде всего, на решении текстовых задач. Текстовая задача несет в себе важные элементы математического моделирования. Решая ее, учащийся некие производственные, экономические, житейские связи зашифровывает с помощью математических символов, придавая им абстрактную математическую форму. Решая уравнения, учащийся расшифровывает результат, согласуя его со здравым смыслом. Вот почему решению текстовых задач, этому важнейшему мостику между математикой и ее приложениями должно уделяться особое внимание. При этом представляется, что техника решения текстовых задач может отрабатываться на любых задачах. Было бы наивным думать, что задача на движение, начинающаяся словами «Два автомобиля:» непременно предназначена для будущих водителей, а для школы со спортивным уклоном она должна начинаться словами «Два лыжника:».

Применение на практике различных задач на составление уравнений позволяет создавать такие учебные ситуации, которые требуют от учащегося умения смоделировать математически определённые физические, химические, экономические процессы и явления, составить план действия в решении реальной проблемы. Практика последних лет говорит о необходимости формирования умений решения задач на составление уравнений различных типов ещё и в связи с включением их в содержание ГИА и ЕГЭ.

Однако, анализ образовательной практики по данному направлению говорит о том, что значительная часть учащихся испытывает серьёзные затруднения при решении задач на составление уравнений. В большей степени это связано с недостаточной сформированностью у учащихся умения составлять план действий, алгоритм решения конкретной задачи, культурой моделирования явлений и процессов. Большинство учащихся решают такие задачи лишь на репродуктивном уровне.

Решению текстовых задач предшествует достаточно долгое время, отводимое на отработку решения уравнений. Начиная с 8 класса, как только выучены дробные рациональные выражения, решения задач по алгебре практически все сводятся к решению дробных рациональных уравнений, которые, в свою очередь, включают чаще всего решение квадратных уравнений.

В 8 классе решение задач с помощью дробных рациональных уравнений как показывает опыт эффективнее решать табличным методом, так как он является более наглядным, что важно для подготовки к ГИА в 9 классе.

Все задачи, решаемые с помощью дробных рациональных уравнений, можно разделить на несколько групп:

  • Задачи на движение по местности.
  • Задачи на движение по воде.
  • Задачи на работу.
  • Задачи на нахождение дробей и т.д.

Начинать обучение следует с простых задач, условия которых полностью соответствуют названиям основных типов, и сводящихся к решению дробных рациональных уравнений. Затем можно приступать к решению более сложных задач. Рекомендуется подобрать разноуровневые задачи по каждому типу, что дает возможность работать со школьниками разных математических способностей.

Мы стараемся научить детей строить таблицы с данными величинами задачи, слева обозначаются объекты (автомобили, лодки, пешеходы, самолеты и т.д.), сверху в колонках — величины, характеризующие данную задачу, и обязательно единицы их измерения. И дети понимают, что из трех величин, зная две, всегда можно записать третью.

Приведем пример оформления задачи:

Автобус-экспресс отправился от вокзала в аэропорт, находящийся на расстоянии 120км от вокзала. Пассажир, опоздавший на 10 минут на автобус, решил добраться до аэропорта на такси. Скорость такси на 10км/ч больше скорости автобуса. С какой скорость ехал автобус, если он приехал в аэропорт одновременно с такси?

Пусть км/ч — скорость автобуса, тогда составим и заполним таблицу:

Скорость (км/ч)Время (ч)Путь (км)
Автобус
Такси

Т.к. по условию задачи пассажир опоздал на автобус на 10 минут =часа, то составим и решим уравнение:

, ОДЗ: >0 (т.к. скорость положительна)

720(х+10) — 720х= х (х+10),

Далее решая квадратное уравнение, получаем:

-90 — не входит в ОДЗ, значит, скорость автобуса равна 80 км/ч.

Основная часть класса уверенно заполняет таблицу и составляет уравнение.

В зависимости от выделенного времени, обучаемым может быть предложен широкий спектр мероприятий — семинары, кружки, факультативы, индивидуальные и групповые консультации и т.д., в рамках которых обучаемые более глубоко осваивают решение задач с помощью уравнений.

Практикум по решению задач табличным методом с помощью дробных рациональных уравнений можно провести во второй половине дня на групповой консультации по математике, что целесообразно в рамках школы полного дня.

Список предлагаемых задач:

Числитель обыкновенной дроби на 4 меньше ее знаменателя. Если к числителю этой дроби прибавить 19, а к знаменателю 28, то она увеличится на . Найдите эту дробь.

Теплоход, собственная скорость которого 18 км/ч, прошел 50 км по течению реки и 8 км против течения, затратив на весь путь 3 часа. Какова скорость течения реки?

Два комбайна убрали поле за 4 дня. За сколько дней мог убрать поле каждый комбайн, если одному из них для выполнения этой работы потребовалось бы на 6 дней меньше, чем другому?

Моторная лодка прошла против течения 8 км и вернулась обратно, затратив на обратный путь на 30 мин меньше, чем при движении против течения. Найдите скорость лодки в неподвижной воде, если скорость течения равна 4 км/ч.

Расстояние 700 км экспресс проходит на 4 часа быстрее товарного поезда, так как его скорость больше скорости товарного поезда на 20 км/ч. Определите скорость каждого из поездов, если известно, что они движутся с постоянной скоростью без остановок.

Мастеру на выполнение заказа потребуется на 5 дней меньше, чем его ученику, но при совместной работе они выполнят заказ на 4 дня быстрее, чем мастер, работающий в одиночку. За сколько дней выполнит заказ мастер, работая в одиночку?

На участке пути длиной 300 км поезд увеличил скорость на 10 км/ч, в результате чего прибыл на конечную станцию на 1 час раньше, чем планировалось по расписанию. С какой скоростью должен был идти поезд по расписанию?

Прозаик хочет набрать на компьютере рукопись объемом 450 страниц. Если он будет набирать на 5 страниц в день больше, чем запланировал, то закончит работу на 3 дня раньше. Сколько страниц в день планирует набирать прозаик?

Дорога между пунктами А и В состоит из подъема и спуска, а ее длина равна 19 км. Пешеход прошел путь из А в В за 5 часов. Время его движения на спуске составило 4 часа. С какой скоростью пешеход шел на спуске, если скорость его движения на подъеме меньше скорости движения на спуске на 1 км/ч?

Велосипедист отправился с некоторой скоростью из города А в город В, расстояние между которыми равно 88 км. Возвращаясь из В в А, он ехал поначалу с той же скоростью, но через 2 часа пути вынужден был сделать остановку на 10 минут. После этого он продолжил путь в А, увеличив скорость на 2 км/ч, и в результате затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В.

Количество решаемых задач может меняться в зависимости от отводимого на это время.

Используемая литература:

  • И.Л.Бродский, А.М.Видус, А.Б.Коротаев «Сборник текстовых задач по математике для профильных классов».
  • В.И. Жохов, Ю.Н.Макарычев, Н.Г.Миндюк «Дидактические материалы по алгебре 8 класс».
  • Сборник задач для подготовки и проведения письменного экзамена по алгебре за курс основной школы под редакцией С.А.Шестакова.
  • Ш.А.Алимов, М.Ю.Колягин и др. «Алгебра 8 класс».
  • А.П.Ершова, В.В.Голобородько, А.С.Ершова «Самостоятельные и контрольные работы по алгебре и геометрии для 8 класса».
  • Решение задач с помощью дробных рациональных уравнений

    Примеры

    Пример 1. От посёлка до речки 60 км. Утром турист на скутере отправился на речку. Вечером он возвратился в посёлок, но при этом ехал со скоростью на 10 км/ч меньшей и потратил на дорогу на 18 мин больше. Сколько времени ехал турист от речки к посёлку?

    Пусть t — время вечером, на дорогу от речки к посёлку.

    Тогда время утром, на дорогу от посёлка к речке t- $\frac<18><60>$ = t-0,3 (ч)

    По условию разность скоростей равна 10:

    $$1,8=t(t-0,3), t \neq 0, t \neq 0,3$$

    $$ D = 0,3^2-4 \cdot (-1,8) = 0,09+7,2=7,29 = 2,7^2 $$

    $$ t = \frac<0,3 \pm 2,7> <2>= \left[ \begin t_1 = -1,1 \\ t_2 = 1,5 \end \right. $$

    Выбираем положительный корень, t = 1,5 ч

    Пример 2. Катер прошёл по течению 120 км. На этот же путь против течения от тратит времени в 1,5 раза больше. Найдите скорость течения, если скорость катера в стоячей воде 20 км/ч.

    Пусть u — скорость течения

    По условию время против течения в 1,5 раз больше:

    $$ 1,5(20-u) = 20+u, u \neq \pm 20 $$

    Пример 3. В раствор, содержащий 50 г соли, добавили 150 г воды. В результате концентрация соли уменьшилась на 7,5%. Найдите первоначальную массу раствора.

    Пусть x — масса воды в первоначальном растворе, в граммах.

    По условию разность концентраций:

    $$ 50 \cdot 150 = \frac<75> <1000>(x+50)(x+200), x \neq -50, x \neq -200 $$

    $$ D = 250^2-4 \cdot (-90000) = 62500+360000 = 100(625+3600) = $$

    $$ = 100 \cdot 4225 = 650^2 $$

    $$ x = \frac<-250 \pm 650> <2>= \left[ \begin x_1 = -450 \\ x_2 = 200 \end \right. $$

    Выбираем положительный корень x=200 г – начальное количество воды в растворе. Начальная масса всего раствора: 50+200 = 250 г.

    Пример 4. Мастер и его ученик, работая вместе, выполняют норму на 8 ч. Если каждый работает самостоятельно, то мастер тратит на выполнение нормы на 12 ч меньше, чем ученик. Сколько часов тратит каждый из них на выполнении нормы?

    Пусть N изделий – это норма, t — время, потраченное мастером.

    Из последней строки таблицы получаем:

    $$ 8(2t+12) = t(t+12), t \neq 0, t \neq -12$$

    $$ t^2-4t-96 = 0 \Rightarrow (t-12)(t+8) = 0 \Rightarrow \left[ \begin t_1 = -8 \\ t_2 = 12 \end \right. $$

    Выбираем положительный корень, t=12 ч — время, которое мастер потратит самостоятельно. Ученик потратит 12+12=24 ч.

    Ответ: 12 ч и 24 ч

    Пример 5*. Один фрилансер может выполнить проект на 12 дней быстрее, чем второй. Над новым проектом первый фрилансер сначала проработал самостоятельно 6 дней, а затем к нему присоединился второй. Через 3 дня совместной работы \frac<3> <5>проекта было готово.

    За сколько дней каждый из фрилансеров может выполнить проект самостоятельно? За сколько дней проект был фактически выполнен?

    Пусть d — количество дней первого фрилансера при самостоятельной работе.

    Решение уравнений с дробями

    О чем эта статья:

    5 класс, 6 класс, 7 класс

    Понятие дроби

    Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

    Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

    • обыкновенный вид — ½ или a/b,
    • десятичный вид — 0,5.

    Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

    Дроби бывают двух видов:

    1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
    2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

    Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

    Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

    Основные свойства дробей

    Дробь не имеет значения, если делитель равен нулю.

    Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

    Дроби a/b и c/d называют равными, если a × d = b × c.

    Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

    Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

    Понятие уравнения

    Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

    • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
    • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

    Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

    Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

    Решить уравнение значит найти все его корни или убедиться, что корней нет.

    Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

    Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

    Что поможет в решении:

    • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
    • если а равно нулю, а b не равно нулю — у уравнения нет корней;
    • если а и b равны нулю, то корень уравнения — любое число.
    Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

    Понятие дробного уравнения

    Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

    Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

    Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

    На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

    Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

    Как решать уравнения с дробями

    1. Метод пропорции

    Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

    Итак, у нас есть линейное уравнение с дробями:

    В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

    После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

    2. Метод избавления от дробей

    Возьмем то же самое уравнение, но попробуем решить его по-другому.

    В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

    • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
    • умножить на это число каждый член уравнения.

    Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

    Вот так просто мы получили тот же ответ, что и в прошлый раз.

    Что еще важно учитывать при решении

    • если значение переменной обращает знаменатель в 0, значит это неверное значение;
    • делить и умножать уравнение на 0 нельзя.

    Универсальный алгоритм решения

    Определить область допустимых значений.

    Найти общий знаменатель.

    Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

    Раскрыть скобки, если нужно и привести подобные слагаемые.

    Решить полученное уравнение.

    Сравнить полученные корни с областью допустимых значений.

    Записать ответ, который прошел проверку.

    Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

    Примеры решения дробных уравнений

    Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

    Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

    1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
    2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
    3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

    Решим обычное уравнение.

    Пример 2. Найти корень уравнения

    1. Область допустимых значений: х ≠ −2.
    2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
    3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

    Переведем новый множитель в числитель..

    Сократим левую часть на (х+2), а правую на 2.

    Пример 3. Решить дробное уравнение:

      Найти общий знаменатель:

    Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

    Выполним возможные преобразования. Получилось квадратное уравнение:

    Решим полученное квадратное уравнение:

    Получили два возможных корня:

    Если x = −3, то знаменатель равен нулю:

    Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.

  • источники:

    http://reshator.com/sprav/algebra/8-klass/reshenie-zadach-s-pomoshchyu-drobnyh-racionalnyh-uravnenij/

    http://skysmart.ru/articles/mathematic/reshenie-uravnenij-s-drobyami