Задания на решение тригонометрических уравнений 10 класс

Способы решения тригонометрических уравнений. 10-й класс

Разделы: Математика

Класс: 10

«Уравнения будут существовать вечно».

Цели урока:

  • Образовательные:
    • углубление понимания методов решения тригонометрических уравнений;
    • сформировать навыки различать, правильно отбирать способы решения тригонометрических уравнений.
  • Воспитательные:
    • воспитание познавательного интереса к учебному процессу;
    • формирование умения анализировать поставленную задачу;
    • способствовать улучшению психологического климата в классе.
  • Развивающие:
    • способствовать развитию навыка самостоятельного приобретения знаний;
    • способствовать умению учащихся аргументировать свою точку зрения;

Оборудование: плакат с основными тригонометрическими формулами, компьютер, проектор, экран.

1 урок

I. Актуализация опорных знаний

Устно решить уравнения:

1) cosx = 1;
2) 2 cosx = 1;
3) cosx = –;
4) sin2x = 0;
5) sinx = –;
6) sinx = ;
7) tgx = ;
8) cos 2 x – sin 2 x = 0

1) х = 2к;
2) х = ± + 2к;
3) х =± + 2к;
4) х = к;
5) х = (–1) + к;
6) х = (–1) + 2к;
7) х = + к;
8) х = + к; к Z.

II. Изучение нового материала

– Сегодня мы с вами рассмотрим более сложные тригонометрические уравнения. Рассмотрим 10 способов их решения. Далее будет два урока для закрепления, и на следующий урок будет проверочная работа. На стенде «К уроку» вывешены задания, аналогичные которым будут на проверочной работе, надо их прорешать до проверочной работы. (Накануне, перед проверочной работой, вывесить на стенде решения этих заданий).

Итак, переходим к рассмотрению способов решения тригонометрических уравнений. Одни из этих способов вам, наверное, покажутся трудными, а другие – лёгкими, т.к. некоторыми приёмами решения уравнений вы уже владеете.

Четверо учащихся класса получили индивидуальное задание: разобраться и показать вам 4 способа решения тригонометрических уравнений.

(Выступающие учащиеся заранее подготовили слайды. Остальные учащиеся класса записывают основные этапы решения уравнений в тетрадь.)

1 ученик: 1 способ. Решение уравнений разложением на множители

sin 4x = 3 cos 2x

Для решения уравнения воспользуемся формулой синуса двойного угла sin 2 = 2 sin cos
2 sin 2x cos 2x – 3 cos 2x = 0,
cos 2x (2 sin 2x – 3) = 0. Произведение этих множителей равно нулю, если хотя бы один из множителей будет равен нулю.

2x = + к, к Z или sin 2x = 1,5 – нет решений, т.к | sin| 1
x = + к; к Z.
Ответ: x = + к , к Z.

2 ученик. 2 способ. Решение уравнений преобразованием суммы или разности тригонометрических функций в произведение

cos 3x + sin 2x – sin 4x = 0.

Для решения уравнения воспользуемся формулой sin– sin = 2 sin сos

cos 3x + 2 sin сos = 0,

сos 3x – 2 sin x cos 3x = 0,

cos 3x (1 – 2 sinx) = 0. Полученное уравнение равносильно совокупности двух уравнений:

Множество решений второго уравнения полностью входит во множество решений первого уравнения. Значит

Ответ:

3 ученик. 3 способ. Решение уравнений преобразованием произведения тригонометрических функций в сумму

sin 5x cos 3x = sin 6x cos2x.

Для решения уравнения воспользуемся формулой

Ответ:

4 ученик. 4 способ. Решение уравнений, сводящихся к квадратным уравнениям

3 sin x – 2 cos 2 x = 0,
3 sin x – 2 (1 – sin 2 x ) = 0,
2 sin 2 x + 3 sin x – 2 = 0,

Пусть sin x = t, где | t |. Получим квадратное уравнение 2t 2 + 3t – 2 = 0,

. Таким образом . не удовлетворяет условию | t |.

Значит sin x = . Поэтому .

Ответ:

III. Закрепление изученного по учебнику А. Н. Колмогорова

1. № 164 (а), 167 (а) (квадратное уравнение)
2. № 168 (а) (разложение на множители)
3. № 174 (а) (преобразование суммы в произведение)
4. (преобразование произведения в сумму)

(В конце урока показать решение этих уравнений на экране для проверки)

№ 164 (а)

2 sin 2 x + sin x – 1 = 0.
Пусть sin x = t, | t | 1. Тогда
2 t 2 + t – 1 = 0, t = – 1, t= . Откуда

Ответ: –.

№ 167 (а)

3 tg 2 x + 2 tg x – 1 = 0.

Пусть tg x = 1, тогда получим уравнение 3 t 2 + 2 t – 1 = 0.

Ответ:

№ 168 (а )

Ответ:

№ 174 (а )

Ответ:

Решить уравнение:

Ответ:

2 урок (урок-лекция)

IV. Изучение нового материала (продолжение)

– Итак, продолжим изучение способов решения тригонометрических уравнений.

5 способ. Решение однородных тригонометрических уравнений

Уравнения вида a sin x + b cos x = 0, где a и b – некоторые числа, называются однородными уравнениями первой степени относительно sin x или cos x.

sin x – cos x = 0. Разделим обе части уравнения на cos x. Так можно сделать, потери корня не произойдёт, т.к. , если cos x = 0, то sin x = 0. Но это противоречит основному тригонометрическому тождеству sin 2 x + cos 2 x = 1.

Получим tg x – 1 = 0.

Ответ:

Уравнения вида a sin 2 x + bcos 2 x + c sin x cos x = 0 , где a, b, c –некоторые числа, называются однородными уравнениями второй степени относительно sin x или cos x.

sin 2 x – 3 sin x cos x + 2 cos 2 = 0. Разделим обе части уравнения на cos x, при этом потери корня не произойдёт, т.к. cos x = 0 не является корнем данного уравнения.

tg 2 x – 3tg x + 2 = 0.

Пусть tg x = t. D = 9 – 8 = 1.

тогда Отсюда tg x = 2 или tg x = 1.

В итоге x = arctg 2 + , x =

Ответ: arctg 2 + ,

Рассмотрим ещё одно уравнение: 3 sin 2 x – 3 sin x cos x + 4 cos 2 x = 2.
Преобразуем правую часть уравнения в виде 2 = 2 · 1 = 2 · (sin 2 x + cos 2 x). Тогда получим:
3sin 2 x – 3sin x cos x + 4cos 2 x = 2 · (sin 2 x + cos 2 x),
3sin 2 x – 3sin x cos x + 4cos 2 x – 2sin 2 x – 2 cos 2 x = 0,
sin 2 x – 3sin x cos x + 2cos 2 x = 0. (Получили 2 уравнение, которое уже разобрали).

Ответ: arctg 2 + k,

6 способ. Решение линейных тригонометрических уравнений

Линейным тригонометрическим уравнением называется уравнение вида a sin x + b cos x = с, где a, b, c – некоторые числа.

Рассмотрим уравнение sin x + cos x = – 1.
Перепишем уравнение в виде:

Учитывая, что и, получим:

Ответ:

7 способ. Введение дополнительного аргумента

Выражение a cos x + b sin x можно преобразовать:

.

(это преобразование мы уже ранее использовали при упрощении тригонометрических выражений)

Введём дополнительный аргумент – угол такой, что

Тогда

Рассмотрим уравнение: 3 sinx + 4 cosx = 1.

Учтём, что . Тогда получим

0,6 sin x + 0,8 cosx = 1. Введём дополнительный аргумент – угол такой, что , т.е. = arcsin 0,6. Далее получим

Ответ: – arcsin 0,8 + +

8 способ. Уравнения вида Р

Такого рода уравнения удобно решать при помощи введения вспомогательной переменной t = sin x ± cosx. Тогда 1 ± 2 sinx cosx = t 2 .

Решить уравнение: sinx + cosx + 4 sinx cosx – 1 = 0.

Введём новую переменную t = sinx + cosx, тогда t 2 = sin 2 x + 2sin x cos x + cos 2 = 1 + 2 sin x cos x Откуда sin x cos x = . Следовательно получим:

t + 2 (t 2 – 1) – 1 = 0.
2 t 2 + t – 2 – 1 = 0,
2 t 2 + t – 3 = 0..Решив уравнение, получим = 1, =.

sinx + cosx = 1 или sinx + cosx =

Ответ:

9 способ. Решение уравнений, содержащих тригонометрические функции под знаком радикала.

Решить уравнение:

В соответствии с общим правилом решения иррациональных уравнений вида, запишем систему, равносильную исходному уравнению:

Решим уравнение 1 – cos x = 1 – cos 2 x.

1 – cos x = 1 – cos 2 x,
1 – cos x – (1 – cos x) (1 + cos x) = 0,
(1 – cos x) (1 – 1 – cos x) = 0,
– (1 – cos x) cos x = 0.

Условию удовлетворяют только решения

Ответ:

10 способ. Решение уравнений с использованием ограниченности тригонометрических функций y = sin x и y = cos x.

Решить уравнение: sin x + sin 9x = 2.
Так как при любых значениях х sin x 1, то данное уравнение равносильно системе:

Решение системы

Ответ:

V. Итог урока

Таким образом мы сегодня рассмотрели 10 различных способов решения тригонометрических уравнений. Безусловно, многие из приведённых задач могут быть решены несколькими способами.

(Пятерым наиболее подготовленным учащимся , а также всем желающим дать индивидуальное творческое задание: найти различные способы решения тригонометрического уравнения sinx + cosx = 1 )

Домашнее задание: № 164 -170 (в, г).

методический материал «Система заданий по теме решние тригонометрических уравнений», 10 класс
методическая разработка по алгебре (10 класс) по теме

Дидактический материал «Система заданий по теме «решение тригонометрических уравнений» составлен по 3-м урвням.

Скачать:

ВложениеРазмер
sistema_zadach_po_teme_reshenie_trigonometricheskih_uravneniy.rar197.78 КБ

Предварительный просмотр:

Тригонометрия традиционно является одной из важнейших составных частей курса элементарной математики. Она представляет собой раздел математики, посвященный изучению особого класса функций, называемых тригонометрическими.

Основной моделью, позволяющей наглядно проиллюстрировать понятие тригонометрической функции, является единичная окружность на плоскости с фиксированной системой координат, начало которой совпадает с центром окружности. Она же представляет некий инструмент для решения простейших тригонометрических уравнений, неравенств и их систем. С помощью единичной окружности можно корректно записать ответ при решении тригонометрических уравнений, неравенств и их систем, учтя область определения уравнения (неравенства), а также исключив повторяющиеся решения. Так, если в результате решения уравнения мы получим две серии решений: x=π4k,k∈Ζ,

x=πn,n∈Ζ, то легко видеть, что числа x=πn,n∈Ζ, содержатся среди множества чисел x=π4k,k∈Ζ. Поэтому ответом будет x=π4k,k∈Ζ.

Единичная окружность позволяет проанализировать тригонометрические формулы, сравнив области определений функций, стоящих в левой и правой частях каждой из них, и выделить «опасные формулы». Назовем формулу «опасной», если области определений функций, стоящих в левой и правой ее частях, не совпадают. Бездумное применение такими формулами может привести к потере корней (или приобретению посторонних корней) уравнения.

Рассмотрим, например, формулу: tg 2 x = 2tgx1-tg2x. Найдем область определения функции у = tg 2 x : 2x≠π2+πk,k∈Ζ. Отметим точки, соответствующие недопустимым значениям х , на единичной окружности (рис 1).

  1. Область определения функции у=2tgx1-tg2x : tg 2 x ≠ 0, x≠π4+π2m,m∈Z,

Решим уравнение ctg x + tg 2 x = 0 (1). В лучшем случае ученик решает так: ОЗД x≠πn,n∈Z,

x≠π4+π2k,k∈Z. Переходим к уравнению (2): 1tgx+2tgx1-tg2x=0.

Далее: 1-tg2x+2tg2x1-tg2x∙tgx=0; 1+ tg 2 x = 0. Ответ: действительных корней нет.

Да, действительно, действительных корней у уравнения (2) нет, но не у данного уравнения (1). Легко видеть, что числа вида x=π2+πk,k∈Z , удовлетворяют уравнению (1). Дело в том, что при замене tg 2 x выражением 2tgx1-tg2x происходит сужение области определения функции у = tg 2 x на множество π2+πk,k∈Z .

Пользоваться «опасными» формулами, конечно, можно, но каждый раз следить за изменением области допустимых значений уравнения (неравенства) при этом.

Учащиеся нередко сталкиваются и с такой проблемой, когда полученный ими ответ при решении тригонометрического уравнения не совпадает с ответом учебника или других учеников класса.

Кто прав в этой ситуации? И здесь нам поможет единичная окружность.

В качестве примера рассмотрим различные способы записи чисел, соответствующих точкам А, В, С окружности (рис. 4) B

1) x=π3+2π3k,k∈Z 5) x=π+2πn,n∈Z x

2) x = π+2 π l , l ∈Z x=π3+2πm,m∈Z C

x=±π3+2πm,m∈Z x=- π3+2πr,r∈Z Рис.4

3) x=-π3+2π3t,t∈Z 6) x=-π+2πn,n∈Z 4) x= π+2π3r,r∈Z x=±π3+2πm,m∈Z

Можно спорить, какой из перечисленных способов лучше, но ясно одно, что все они правильно указывают числа, соответствующие трем заданным точкам единичной окружности.

Опыт показывает, что учащиеся часто пренебрегают единичной окружностью, делая упор на заучивание формул для решения простейших тригонометрических уравнений, а потому решают фактически вслепую. В результате допускают ошибки.

Непреодолимым барьером для значительной части учащихся являются задачи с параметром, в том числе тригонометрические уравнения и их системы с параметром. При решении просто необходимо использовать не только единичную окружность, но и координатную прямую.

ТАБЛИЦА «ОПАСНЫХ» ФОРМУЛ.

Известны различные типы и методы решения тригонометрических уравнений: простейшие; решаемые разложением левой части на множители; приводимые к одной функции одного аргумента; однородные относительно sin x , cos x ; решаемые введением вспомогательного аргумента; используя свойство ограниченности выражения А sin x +В cos x и т.д. При решении любого уравнения я рекомендую учащимся использовать единичную окружность, а при необходимости и координатную прямую. Найдя область допустимых значений уравнения, желательно исключить на единичной окружности те точки (если такие есть), числа соответствующие которым не могут являться корнями данного уравнения. Затем надо постараться привести данное уравнение к одному или нескольким простейшим уравнениям. Решение полученных уравнений отметить на единичной окружности соответствующими точками. Окончательный ответ записывается наиболее рационально.

Особенно важно применение единичной окружности при решении уравнений:

  1. с переменной в знаменателе;
  2. содержащих функции тангенс и котангенс;
  3. корни которых должны удовлетворять определенным условиям;
  4. методом оценок.

Но при решении других типов не стоит игнорировать окружность, т.к. на заключительном этапе она поможет при отборе корней, при записи ответа. Решая уравнение, необходимо следить за изменением области допустимых значений уравнения. Она может меняться в результате тождественных преобразований, возведении обеих частей уравнения в одну и ту же четную степень, при применении тригонометрических тождеств и т.д. При применении одних тригонометрических тождеств область допустимых значений уравнения может остаться неизменной, а при других – может расшириться или сузиться. Использование предлагаемой таблицы «опасных» формул, на мой взгляд, может помочь решить вопрос о потере или приобретении посторонних корней при применении различных тригонометрических тождеств.

Область допустимых значений левой части тождества

Область допустимых значений правой части тождества

ЕГЭ Профиль №13. Тригонометрические уравнения

13 задания профильного ЕГЭ по математике представляет собой уравнение с отбором корней принадлежащих заданному промежутку. Одним из видов уравнений которое может оказаться в 13 задание является тригонометрическое уравнение. Как правило, это достаточно простое тригонометрическое уравнение для решения которого потребуется знания основных тригонометрических формул, и умение решать простейшие тригонометрические уравнения. Отбор корней тригонометрического уравнения принадлежащих заданному промежутку можно производить одним из четырех способов: методом перебора, с помощью тригонометрической окружности, с помощью двойного неравенства и графическим способом. В данном разделе представлены тригонометрические уравнения (всего 226) разбитые на три уровня сложности. Уровень А — это простейшие тригонометрические уравнения, которые являются подготовительными для решения реальных тригонометрических уравнений предлагаемых на экзамене. Уровень В — состоит из уравнений, которые предлагали на реальных ЕГЭ и диагностических работах прошлых лет. Уровень С — задачи повышенной сложности.


источники:

http://nsportal.ru/shkola/algebra/library/2012/03/25/metodicheskiy-material-sistema-zadaniy-po-teme-reshnie

http://math100.ru/prof-ege13-4/