Задания на решение уравнений с квадратным корнем

Задания на решение уравнений с квадратным корнем

Найдите корни уравнения .

Если корней несколько, запишите их в ответ без пробелов в порядке возрастания.

Решите уравнение .

Если корней несколько, запишите их в ответ без пробелов в порядке возрастания.

По теореме, обратной теореме Виета, сумма корней равна 1, а их произведение −6.

Тем самым, это числа −2 и 3.

Решите уравнение .

Если корней несколько, запишите их в ответ без пробелов в порядке возрастания.

Запишем уравнение в виде По теореме, обратной теореме Виета, сумма корней равна −3, а их произведение −4.

Урок-практикум «Графическое решение уравнений, содержащих функцию y=√х (функцию квадратного корня)». 8-й класс

Разделы: Математика

Класс: 8

Базовый учебник: Алгебра 8 класс. Учебник для общеобразовательных учреждений/ А. Г. Мордкович.

Цель урока: применить алгоритм решения уравнений графически к функции у = .

Задачи:

  • Обучающая: способствовать закреплению знаний свойств функции у = , умение строить график этой функции, использовать алгоритм графического решения уравнений применительно к графику квадратного корня из неотрицательного числа.
  • Развивающая: развитие умения правильно оперировать полученными знаниями, логически мыслить; развитие инициативы, умения принимать решения, не останавливаться на достигнутом; работа на интерактивной доске, познавательная активность.
  • Воспитывающая: воспитание познавательного интереса к предмету; к самостоятельности при решении учебных задач; воспитание воли и упорства для достижения конечных результатов.

Тип урока: урок практикум.

Методы:

  • словестные: фронтальная работа
  • наглядные алгоритм, графики.
  • практические: индивидуальная, парная и групповая работа, тренировочная самостоятельная работа.

Оборудование: учебник, рабочая тетрадь, раздаточный материал, школьная доска, интерактивная доска.

План урока.

1. Организационный момент. 1 мин

2. Проверка домашнего задания. 5 мин

3. Актуализация знаний. Устная работа с классом. 7 мин

4. Закрепление материала 20 мин

5. Тренировочная самостоятельная работа. 8 мин

6. Постановка домашнего задания. 3 мин

7. Рефлексия. 1 мин

8. Итог урока. 1мин

Ход урока

1. Организационный момент.

2. Проверка домашнего задания. (Учащиеся проверяют домашнюю работу, сверяясь с эталоном, оценивают правильность и полноту выполнения согласно критериям, ставят оценку).

Для №13.3 Сопоставьте график который получился у вас дома с одним из графиков. Слайд 2. Из данных утверждений (приложение 1 у каждого ученика) выберите те свойства, которые подходят для функции у = — :

С помощью графика найдите: Слайд 3

а) значения у при х = 1; ; 9; (выборочно)

б) значения х, если у = 0; -2; -4; (выборочно)

в) наименьшее и наибольшее значения функции на отрезке ;

г) при каких значениях х график функции расположен выше прямой у = -2. Ниже прямой у = -2.

3. Актуализация знаний. Устная работа с классом.

1. Принадлежит ли графику функции у = точки

А(2; ); В(1; 0); С(6,25; 2,5); Д(-9; 3).Слайд 4

2. Найдите наименьшее и наибольшее значение функции у = Слайд 5

а) на отрезке ;

б) на полуинтервале [4; 7);

в) на луче [0; )

3. Решите уравнение по заданному графику: х 2 = х +2. Слайд 6

Учащиеся вспоминают (7 класс) алгоритм решения уравнений данного типа, проговаривая, что является корнем уравнения. Как данное задание мы будем применять на уроке.

Ученики говорят тему урока(на доске записана), формулируют цель,

4. Закрепление материала

Задание 1. Итак, повторив алгоритм решения уравнений графически выполним задание № 13.9 (б).

(ученик у доски, остальные в тетради)

= 6 – х;

1) Рассмотрим две функции у = и у = 6 — х

2) Построим график функции у = ,

х014
у012

3) Построим график функции у = 6 – х,

х02
у64

4) По графику устанавливаем, что графики пересекаются в одной точке А(4; 2). Проверим принадлежность данной точки нашим функциям.

Ответ: х = 4. Слайд 7

Задание 2 Решить уравнение графически: два человека у доски остальные на местах выполняют соответственно свои варианты самостоятельно. Совместно устраняют в ходе проверки обнаруженные пробелы (на доске и на листах учеников готовая памятка с построенным графиком линейной функции). Построение графика квадратного корня ученики выполняют самостоятельно. И записывают ответ.

Памятка 1 вариант

а) – = х – 2

х01
у-2-1

Оцените себя, отметив уровень этого показателя. Понимание: – ______________+

Памятка 2 вариант

б) — = 2 – 3х

х01
у2-1

Оцените себя, отметив уровень этого показателя. Понимание: – ______________+

Задание 3. Решить графически систему уравнений

(работа выполняется в парах используя приложение № 2)

После выполнения задания учащиеся проверяют свое решение, сравнивая с эталоном. Слайд 8

Встаньте те кто справился с данным заданием.

Физкультминутка для глаз. Слайд 9

Задание 4. Работа в группах(задания дифференцированы, приложение 3): Слайд 10

Задание 1 группе: Докажите, что графики функций у = и у = х + 0,5 не имеют общих точек. Слайд 11

Чтобы доказать, что графики функций y = и у = х + 0,5 не имеют общих точек, достаточно их построить.

Задание 2 группе: Сколько корней имеет данное уравнение = х + b Слайд 12

а) Построим график функции y = и будем относительно него передвигать прямые вида y = x + b. Это параллельные прямые, которые образуют острый угол с положительным направлением оси абсцисс.

Таким образом, очевидно, что уравнение = x + b может иметь один, два корня, а может и не иметь корней.

Задание 3 группе: Сколько корней имеет данное уравнение = — х + b

Прямые вида y = –x + b – это параллельные прямые, которые образуют тупой угол с положительным направлением оси абсцисс.

Получаем, что уравнение = –x + b имеет либо один корень, либо не имеет корней.

Обсуждение решений каждой группы.( Для готовых графиков квадратного корня на интерактивной доске учащиеся показывают свои решения)

5. Тренировочная самостоятельная работа.

В а р и а н т 1

1 . По графику функции у = найдите:

а) значение функции при х = 3, у =____

б) значение аргумента, которому соответствует значение y = 1,8; х = _____

2. Принадлежит ли графику функции y = точка:

а) А (36; 6); ______ б) В (–9; 3)_______?

3. Решите уравнение графически — = — х

На листочках с самостоятельной работой поставьте:

1 – если на уроке вам было интересно и понятно;

2 – интересно, но не понятно;

3 – не интересно, но понятно;

4 – не интересно, не понятно.

В а р и а н т 2

1. По графику функции y = найдите:

а) значение функции при х = 5; у =

б) значение аргумента, которому соответствует значение у = 1,5; х =

2. Принадлежит ли графику функции y = — точка:

а) А (81; -9)______ б) В (–16; 4)_______

3. Решите уравнение графически = х

На листочках с самостоятельной работой поставьте:

1 – если на уроке вам было интересно и понятно;

2 – интересно, но не понятно;

3 – не интересно, но понятно;

4 – не интересно, не понятно.

Проверяем работу с помощью эталона. Слайд 13 Выясняем проблемы по данной теме.

6. Постановка домашнего задания.

№ 13.9(г), № 13.11(г), № 13.16(рис 7 опишите свойства функции)

7. Рефлексия.

На листочках с самостоятельной работой поставьте:

1 – если на уроке вам было интересно и понятно;

2 – интересно, но не понятно;

3 – не интересно, но понятно;

4 – не интересно, не понятно.

8. Итог урока.

Урок я хочу закончить словами древнегреческого ученого Фалеса:

Что быстрее всего? – Ум

Что мудрее всего? – Время

Что приятнее всего? Достичь желаемого.

Я думаю, мы с вами достигли желаемого? Еще раз вспомнли функцию квадратного корня из неотрицательного числа и применили алгоритм решения уравнения графически к этой функции. Но ребята, кроме у = в дальнейшем мы будем рассматривать более сложные функции, например у = у = -1 у = +5.

Так что перспектива развития ваших знаний велика. Дерзайте.

Приложение № 1

Для номера 13.3 Сопоставьте график который получился у вас дома с одним из графиков. Слайд 2

Из данных утверждений выберите те свойства, которые подходят для функции у = — :

  1. Область определения функции – луч [0; + )
  2. Область определения функции – луч ( + ; 0]
  3. у = 0 при х = 0, у 0
  4. Функция убывает на луче [0; + )
  5. Функция возрастает на луче [0; + )
  6. унаиб = 0, унаим не существует
  7. Функция непрерывна на луче [0; + )
  8. Область значения функции – луч [0; + )
  9. Область значения функции – луч (- ; 0]
  10. Функция выпукла вниз.
  11. Функция выпукла вверх.

Приложение 2

Работа в парах Задание № 3

Решите графически систему уравнений:

Приложение 3

Работа в группах Задание № 4

Задание 1 группе: Докажите, что графики функций у = и у = х + 0,5 не имеют общих точек.

Задание 2 группе: Сколько корней имеет данное уравнение = х + b

Задание 3 группе: Сколько корней имеет данное уравнение = — х + b

Алгебра

План урока:

Иррациональные уравнения

Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.

Приведем примеры иррациональных ур-ний:

Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести

Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.

Простейшие иррациональные уравнения

Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:

где а – некоторое число (константа), f(x) – рациональное выражение.

Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:

Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии

n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.

Ответ: корней нет.

Пример. Решите ур-ние

Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:

Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).

Пример. Найдите решение ур-ния

Решение. Возведем обе части в пятую степень:

х 2 – 14х – 32 = 0

Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:

D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324

Итак, нашли два корня: (– 2) и 16.

Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.

Пример. Решите ур-ние

Решение. Возводим обе части во вторую степень:

х – 2 = х 2 – 8х + 16

D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9

Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):

при х = 3 х – 4 = 3 – 4 = – 1

при х = 6 6 – 4 = 6 – 4 = 2

Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.

Пример. Решите ур-ние

Решение. Здесь используется кубический корень, а потому возведем обе части в куб:

3х 2 + 6х – 25 = (1 – х) 3

3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3

Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:

Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.

Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:

при х = 2 1 – х = 1 – 2 = – 1

Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:

Уравнения с двумя квадратными корнями

Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.

Пример. Решите ур-ние

Решение. Перенесем вправо один из корней:

Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:

Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:

Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:

(2х – 4) 2 = 13 – 3х

4х 2 – 16х + 16 = 13 – 3х

4х 2 – 13х + 3 = 0

D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121

Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:

Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3

На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.

Введение новых переменных

Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние

Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.

Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:

х 1/2 – 10х 1/4 + 9 = 0

Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид

Это квадратное ур-ние. Найдем его корни:

D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64

Получили два значения t. Произведем обратную замену:

х 1/4 = 1 или х 1/4 = 9

Возведем оба ур-ния в четвертую степень:

(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4

х = 1 или х = 6561

Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:

В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.

Пример. Решите ур-ние

х 1/3 + 5х 1/6 – 24 = 0

Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:

Его корни вычислим через дискриминант:

D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121

Далее проводим обратную заменуx 1/6 = t:

х 1/6 = – 8 или х 1/6 = 3

Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.

Замена иррационального уравнения системой

Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.

Пример. Решите ур-ние

Решение. Заменим первый корень буквой u, а второй – буквой v:

Исходное ур-ние примет вид

Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:

Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:

Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:

(х + 6) + (11 – х) = u 3 + v 2

из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:

17 = u 3 + (5 – u) 2

17 = u 3 + u 2 – 10u + 25

u 3 + u 2 – 10u + 8 = 0

Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа

подставим полученные значения в (4):

x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3

x + 6 = 1 или х + 6 = 8 или х + 6 = – 64

х = – 5 или х = 2 или х = – 70

Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим

Корень подошел. Проверяем следующее число, х = 2:

Корень снова оказался верным. Осталась последняя проверка, для х = – 70:

Итак, все три числа прошли проверку.

Уравнения с «вложенными» радикалами

Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:

При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:

Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:

Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:

Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:

Возводим в квадрат и получаем:

х 2 + 40 = (х + 4) 2

х 2 + 40 = х 2 + 8х + 16

И снова нелишней будет проверка полученного корня:

Иррациональные неравенства

По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:

Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.

Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида

Может быть справедливым только тогда, когда

То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во

при четном n можно заменить системой нер-в

Пример. При каких значениях x справедливо нер-во

Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:

х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)

Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во

чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.

Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.

Пример. Найдите решение нер-ва

Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

x 2 – 7x– 8 2 – 7x– 8 = 0

D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81

Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

Пример. Решите нер-во

Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9

Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

f(x) > 0 (подкоренное выражение не может быть отрицательным);

g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

Пример. Решите нер-во

Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

х 2 – 10х + 21 > 0(1)

Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

Во-вторых, выражение 4 – х не может быть отрицательным:

Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3


источники:

http://urok.1sept.ru/articles/659649

http://100urokov.ru/predmety/urok-11-uravneniya-irracionalnye