Задания с уравнениями второй квадратичной формы

VMath

Инструменты сайта

Основное

Навигация

Информация

Действия

Содержание

Вторая квадратичная форма

Краткие теоретические сведения

\begin I_2 = -d\vec\cdot d\vec=d^2\vec\cdot \vec. \end Равенство $-d\vec\cdot d\vec=d^2\vec\cdot \vec$ можно доказать: \begin d\vec\cdot \vec=0\,\, \Rightarrow \,\, d(d\vec\cdot \vec)=(d^2\vec\cdot \vec)+(d\vec\cdot d\vec)=0 \end Так как \begin I_2 = d^2\vec\cdot \vec \end и \begin \vec=\frac<\vec_u\times \vec_v><|\vec_u\times \vec_v|>, \,\, |\vec_u\times \vec_v|=\sqrt, \end то коэффициенты для второй квадратичной формы можно записать через смешанное произведение: \begin I_2&=L\,du^2+2M\,du\,dv+N\,dv^2,\\ L&=\frac<(\vec_,\vec_u, \vec_v)><\sqrt>,\\ M&=\frac<(\vec_,\vec_u, \vec_v)><\sqrt>,\\ N&=\frac<(\vec_,\vec_u, \vec_v)><\sqrt>. \end

Решение задач

Задание 1 (Феденко 717)

Найти вторую квадратичную форму сферы: \begin x&=R\,\mbox\,u\,\mbox\,v,\\ y&=R\,\mbox\,u\,\mbox\,v,\\ z&=R\,\mbox\,u. \end

Кривизны

Краткие теоретические сведения

Нормальным сечением поверхности в точке $P$ называют линию пересечения поверхности с плоскостью, проходящей через нормаль поверхности в этой точке.

Кривизну нормального сечения поверхности в направлении $du:dv$ называют нормальной кривизной поверхности в данной точке и в данном направлении. Она вычисляется по формуле: \begin k_n=\frac=\frac \end

Направление $du:dv$ называется главным, если нормальная кривизна поверхности в этом направлении достигает экстремального значения. В каждой точке поверхности имеются два главных направления. Нормальные кривизны соответствующих главных направлений называют главными кривизнами $k_1$ и $k_2$.

Необходимое и достаточное условие, чтобы направление $du:dv$ было главным: \begin \left| \begin dv^2 & -du\,dv & du^2 \\ E & F & G \\ L & M & N \\ \end \right|=0. \end

Главные кривизны $k_1$ и $k_2$ можно найти из уравнения: \begin k^2(EG-F^2)-k(LG-2MF+NE)+(LN-M^2)=0. \end

\begin & K>0 \,\, \Rightarrow \mbox< точка поверхности называется эллиптической>,\\ & K diffgeom/seminar9.txt · Последние изменения: 2021/06/14 10:45 — nvr

Квадратичные формы

Содержание:

Квадратичные формы и их определение

Определение. Квадратичной формой L (x1, x2, . xn) от n переменных называется сумма, каждый член которой является или квадратом одной из переменных, или произведением двух различных переменных, взятых с некоторым коэффициентом, то есть
(2.44)

Допускаем, что в квадратичной форме (2.44) aij — действительные числа. Распишем квадратичную форму (2.44), разбив слагаемые, содержащие произведения переменных, на две равные части:

Матрица
(2.45)

или A = ij> (i, j = 1, 2, . n) является симметричной, так как aij = aji, называется матрицей квадратичной формы (2.44).

Рангом квадратичной формы называется ранг ее матрицы. Квадратичная форма называется невырожденной, если ее матрица невырожденная.
Если то квадратичную форму можно переписать в матричном виде L (x1, x2, . xn) = X T AX.

Выражение X T AX представляет собой квадратичную форму в матричном виде.

Пример 1. Записать в матричном виде квадратичную форму

Решение. Матрица данной квадратичной формы имеет вид

А =

Значит,

Квадратичная форма называется канонической (или другими словами, имеет канонический вид), если все aij = 0, когда i ≠ j. Тогда квадратичная форма будет иметь вид

Рассмотрим следующую теорему.

ТЕОРЕМА 1. Произвольная квадратичная форма приводится к каноническому виду.

Доказательство. Пусть задана квадратичная форма (2.44) с матрицей (2.45) в базисе . Так как A — симметричная матрица, то существует ортогональная матрица B такая, что.

Матрица B является матрицей перехода от базиса
(2.46)
к некоторому базису
. (2.47)

Примечание. Действительная квадратная матрица называется ортогональной, если сумма квадратов элементов каждого столбца равна единице и сумма произведений соответствующих элементов из двух разных столбцов равна нулю. Необходимое и достаточное условие ортогональности матрицы В является условие В T ⋅ B = Е.

Пусть X и Y являются векторами-столбцами из координат вектора соответственно в базисах (2.46) и (2.47). Тогда X = BY и

или
(2.48)

Примечание. При доказательстве данной теоремы использовали транспонирование произведения матриц по формуле (СY) T = Y T ⋅ C T .

Заметим, что в канонической форме (2.48) λ1, λ2, . λn являются собственными числами матрицы A.

Пример 2. Привести квадратичную форму к каноническому виду с помощью ортогональной матрицы и найти ее.

Решение. Матрица данной квадратичной формы имеет вид . Запишем систему типа (2.39) для нахождения собственных чисел и собственных векторов
(2.49)
Характеристическое уравнение данной системы имеет вид
или (2 – λ) (5 – λ) – 4 = 0.
Решив данное уравнение, находим λ1 = 6, λ2 = 1. Значит канонический вид данной квадратичной формы является .
Найдем ортогональную матрицу.

Столбцами ортогональной матрицы, которая приводит квадратичную форму к каноническому виду, является ортонормированный собственные вектор-столбец матрицы A.

Сначала найдем нормированный собственный вектор-столбец матрицы A с собственным значением λ1 = 6. Для этого из системы (2.49) имеем систему для нахождения координат вектора:

Из данной системы находим x2 = 2x1 или u2 = 2u1. Значит, при произвольном u1, отличном от нуля, столбец является собственным вектором-столбиком матрицы A, а столбец является нормированным собственным вектором-столбиком матрицы A. Здесь использовано, что .
Аналогично находим вектор-столбец матрицы A с собственным значением λ2 = 1, а именно из системы:

Находим x1 = –2x2 или при произвольном s, отличном от нуля, столбец является собственным вектором матрицы A. Столбец является нормированным собственным вектором матрицы A. Значит, искомая матрица имеет вид:

Замечание. Легко проверить, что для данного примера 2.
Рассмотрим на примере еще один метод приведения квадратичной формы к каноническому виду.

Метод Лагранжа приведения квадратичной формы к каноническому виду заключается в последовательном выделении полных квадратов.

Пример 3. Привести к каноническому виду квадратичную форму методом Лагранжа. Сначала выделим полный квадрат при переменной x1, коэффициент при которой отличен от нуля.

Итак, невырожденное линейное преобразование

приводит данную квадратичную форму к каноническому виду

Канонический вид квадратичной формы не является однозначным, так как одна и та же квадратичная форма может быть приведена к каноническому виду многими способами. Однако полученные разными способами квадратичные формы имеют ряд общих свойств.

Сформулируем одно из этих свойств, которое выражает закон инерции квадратичных форм, и заключается в следующем: все канонические формы, к которым приводится данная квадратичная форма, имеют:
1) одно и то же число нулевых коэффициентов;
2) одно и то же число положительных коэффициентов;
3) одно и то же число отрицательных коэффициентов.

Определение 1. Квадратичная форма L (x1, x2, . xn) называется положительно определенной, если для всех действительных значений x1, x2, . xn используется неравенство L (x1, x2, . xn) > 0.

Определение 2. Если L (x1, x2, . xn) является положительно определенной формой, то квадратичная формаL (x1, x2, . xn) T AX была положительно (отрицательно) определенной, необходимо и достаточно, чтобы все собственные значения λi (i = 1, 2, . n) матрицы A были положительными (отрицательными).

Данную теорему приводим без доказательства.

Во многих случаях для установления знакоопределенности квадратичной формы удобно применять критерии Сильвестра.

ТЕОРЕМА 3. Для того чтобы квадратичная форма была положительно определенной, необходимо и достаточно, чтобы все главные миноры матрицы этой формы были положительными, то есть
где
Следует заметить, что для отрицательно определенных квадратичных форм знаки главных миноров чередуются, начиная со знака «минус» для минора первого порядка.

Например, квадратичная форма L в примере 2 является положительно определенной на основании теоремы 2, так как корни характеристического уравнения λ1 = 6 и λ2 = 1 являются положительными.
Второй способ. Так как главные миноры матрицы A
являются положительными, то по критерию Сильвестра данная квадратичная форма является положительно определенной.

Квадратичные формы

Однородный многочлен второй степени относительно переменных

называется квадратичной формой от этих переменных. Если взять то квадратическую форму (1.26) можно записать в виде:

Выражение (1.28), а следует и квадратичная форма (1.26) полностью определяется матрицей которая называется матрицей квадратичной формы (1.26).

Выполняя замену базиса, квадратичную форму (1.26) можно привести к виду:

где — новые переменные, что линейно выражаются через (1.28), — собственные значения матрицы

Выражение (1.29) называется каноническим видом квадратичной формы (1.26).

Рассмотрим квадратичную форму где — матрица коэффициентов

Тогда квадратичную форму можно записать так:

Квадратичная форма называется положительно определенной, если для всех действительных значений выполняется неравенство и отрицательной, если для всех действительных значений выполняется неравенство

Если положительно определена, то квадратичная форма называется отрицательно определенной.

Решение примеров:

Пример 1.99

является отрицательно определенной.

Пример 1.100

Используя теорию квадратичных форм, привести к каноническому виду уравнения линии второго порядка

Решение. Уравнение линии запишем в виде в котором

Сложим характеристическое уравнение матрицы и найдем ее собственные значения.

или

Корни уравнения являются собственными значениями. Следует, уравнение линии преобразуется в вид или Полученная линия — гипербола.

Свойства квадратичной формы (1.30) связаны с собственными числами матрицы

Пример 1.101

Привести к каноническому виду уравнения линии

Решение. Группа старших членов этого уравнения квадратическую форму Ее матрица

Собственными значениями будут числа Следует квадратичная форма преобразуется к виду а данное уравнение — к виду или Это эллипс.

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Примеры решений. Квадратичные формы

Решения задач: квадратичные формы

Задача 1. Дано уравнение кривой второго порядка. Найти собственные значения и собственные векторы матрицы соответствующей квадратичной формы и использовать их для приведения уравнения кривой к каноническому виду.

Задача 2. Линейным преобразованием координат привести уравнение кривой второго порядка к каноническому виду и определить тип кривой.

Задача 3. Привести квадратичную форму к каноническому виду: а) методом Якоби, б) методом Лагранжа. Найти канонический базис и матрицу перехода к каноническому базису.

Задача 4. Привести квадратичную форму к каноническому виду с помощью ортогонального преобразования. Найти это преобразование, канонический базис, матрицу перехода к каноническому базису, убедиться, что в этом базисе матрица квадратичной формы является диагональной.

Задача 5. Используя теорию квадратичных форм, исследовать кривую второго порядка заданную общим уравнением и построить ее.

Задача 6. Найти линейное преобразование неизвестных, приводящее квадратичные формы, заданные своими матрицами, к каноническому виду. Выяснить, является ли квадратичная форма знакоопределенной.

$$ \begin 2 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 1\\ \end $$


источники:

http://natalibrilenova.ru/kvadratichnyie-formyi/

http://www.matburo.ru/ex_ag.php?p1=agkvf