Задано уравнение плоской волны acos wt kx

Задано уравнение плоской волны y = A cos (wt – kx), где A = 0,5 см, w = 628 с-1, k = 2 м-1.

Готовое решение: Заказ №8366

Тип работы: Задача

Статус: Выполнен (Зачтена преподавателем ВУЗа)

Предмет: Физика

Дата выполнения: 21.08.2020

Цена: 209 руб.

Чтобы получить решение , напишите мне в WhatsApp , оплатите, и я Вам вышлю файлы.

Кстати, если эта работа не по вашей теме или не по вашим данным , не расстраивайтесь, напишите мне в WhatsApp и закажите у меня новую работу , я смогу выполнить её в срок 1-3 дня!

Описание и исходные данные задания, 50% решения + фотография:

№1 156. Задано уравнение плоской волны y = A cos (wt – kx), где A = 0,5 см, w = 628 с-1, k = 2 м-1. Определить частоту колебаний, длину волны, фазовую скорость, максимальные значения скорости и ускорения колебаний частиц среды.

Уравнение плоской волны в общем виде: , где – смещение частицы среды с координатой в момент времени ; – амплитуда волны; – циклическая частота; – волновое число.

Если вам нужно решить физику, тогда нажмите ➔ заказать контрольную работу по физике.
Похожие готовые решения:
  • Определить длину математического маятника, если известно, что при уменьшении длины нити на 5 см частота колебаний увеличится в 1,5 раза.
  • Плоский конденсатор с площадью пластин S = 100 см2 и стеклянным диэлектриком толщиной d = 1 мм соединён с катушкой самоиндукции длиной l = 20 см и радиусом r = 3 см, содержащей N = 1000 витков. Определить период колебаний в этой цепи.
  • К спиральной пружине подвесили грузик, в результате чего пружина растянулась на 9 см. Каков будет период колебаний грузика, если его немного оттянуть вниз, а затем отпустить? Условие 2 Задача 97. К спиральной пружине подвешен груз, в результате чего пружина растянулась на x = 9 см. Каков будет период колебаний груза, если его немного оттянуть вниз, а затем отпустить?
  • Определить температуру воздуха, если при нормальном отражении от стенки распространяющейся в воздухе звуковой волны с частотой 400 Гц ближайшая пучность находится от неё на расстоянии 0,21 м.

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Задано уравнение плоской волны ξ(x,t)=A cos(ωt-kx), где A=0,5 см, ω=628 с-1, k=2 м-1. Определить: 1) частоту колебаний ν и длину волны λ;

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,296
  • гуманитарные 33,622
  • юридические 17,900
  • школьный раздел 607,211
  • разное 16,830

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

ВОЛНЫ В УПРУГОЙ СРЕДЕ. АКУСТИКА Основные формулы

• Уравнение плоской волны

, или ,
где — смещение точек среды с координатой х в момент времени t; ω — угловая частота; υ скорость распространения коле­баний в среде (фазовая скорость); k — волновое число; ;
λ длина волны.

• Длина волны связана с периодом Т колебаний и частотой ν соотношениями и

•Разность фаз колебаний двух точек среды, расстояние между которыми (разность хода) равно Δx,

где λ длина волны.

• Уравнение стоячей волны

, или

• Фазовая скорость продольных волн в упругой среде:

в твердых телах ,
где Е — модуль Юнга; р — плотность вещества;

в газах ,или ,
где γ — показатель адиабаты (γ =cp/cv отношение удельных теп-
лоемкостей газа при постоянных давлении и объеме); R — моляр-­
ная газовая постоянная; Т—термодинамическая температура; М—
молярная масса; р — давление газа.

• Акустический эффект Доплера

где ν — частота звука, воспринимаемого движущимся прибором (или ухом); υ скорость звука в среде; uпр — скорость прибора относительно среды; uист — скорость источника звука относительно среды; ν 0 — частота звука, испускаемого источником.

• Амплитуда звукового давления

где ν — частота звука; А — амплитуда колебаний частиц среды; υ скорость звука в среде; ρ — ее плотность.

• Средняя объемная плотность энергии звукового поля

где ξ0 — амплитуда скорости частиц среды; ω — угловая частота звуковых волн.

• Энергия звукового поля, заключенного в некотором объеме V,

• Поток звуковой энергии

,

где W — энергия, переносимая через данную поверхность за вре­мя t.

• Интенсивность звука (плотность потока звуковой энергии)

· Интенсивность звука связана со средней объемной плотно­стью энергии звукового поля соотношением

I = J, где J — скорость звука в среде.

· Связь мощности N точечного изотропного источника звука с интенсивностью звука

где r расстояние от источника звука до точки звукового поля, в которой определяется интенсивность.

· Удельное акустическое сопротивление среды

где S — площадь сечения участка акустического поля (например, площадь поперечного сечения трубы при распространении в ней звука).

· Уровень интенсивности звука (уровень звуковой мощности) (дБ)

где I0 — условная интенсивность, соответствующая нулевому уров­ню интенсивности (I0=1 пВт/м 2 ).

· Уровень громкости звука LN в общем случае является слож­ной функцией уровня интенсивности и частоты звука и определя­ется по кривым уровня громкости (рис. 7.1). На графике по гори­зонтальной оси отложены логарифмы частот звука (сами частоты указаны под соответствующими им логарифмами). На вертикальной оси отложены уровни интенсивности звука в децибелах. Уровни громкости звука отложены по вертикальной оси, соответствующей эталонной частоте v=1000 Гц. Для этой частоты уровень громкости, выраженный в децибелах, равен уровню интенсивности в децибе­лах. Уровень громкости звуков других частот определяется по кривым громкости, приведенным на графике. Каждая кривая соот­ветствует определенному уровню громкости.

Кривые уровней громкости

Примеры решения задач

Пример 1. Поперечная волна распространяется вдоль упругого шнура со скоростью J=15 м/с. Период Т колебаний точек шнура равен 1,2 с, амплитуда A=2 см. Определить: 1) длину волны l; 2) фазу j колебаний, смещение x, скорость , и ускорение , точки, отстоящей на расстоянии х=45 м от источника волн в момент t=4 с; 3) разность фаз Dj колебаний двух точек, лежащих на луче и отстоящих от источника волн на расстояниях x1=20 м и x2=30 м.

Решение. 1. Длина волны равна расстоянию, которое волна проходит за один период, и может быть найдена из соотношения

Подставив значения величин J и T, получим

2. Запишем уравнение волны:

где x — смещение колеблющейся точки; х — расстояние точки от источника волн;

J скорость распространения волн.

Фаза колебаний точки с координатой х в момент времени tопределяется выражением, стоящим в уравнении волны под знаком косинуса:

где учтено, что w=2p/Т.

Произведя вычисления по последней формуле, получим

j=5,24 рад, или j=300°.

Смещение точки определим, подставив в уравнение (1) значения амплитуды А и фазы j: x=1 см.

Скорость точки находим, взяв первую производную от смеще­ния по времени:

=dx/dt= -Aw sinw(t — x/J)=

Подставив значения величин p, А, Т и j и произведя вычисле­ния, получим =9 см/с.

Ускорение есть первая производная от скорости по времени, поэтому

=d /dt= -Aw 2 cos w(t — x/J)=

Произведя вычисления по этой формуле, найдем

=27,4 см/с 2 .

3. Разность фаз Dj колебаний двух точек волны связана с рас­стояниемDх между этими точками соотношением

Подставив значения величин l, x1 и x2 и вычислив, получим

Dj=3,49 рад, или Dj=200°.

Пример 2. На расстоянии l=4 м от источника плоской волны частотой v=440 Гц перпендикулярно ее лучу расположена стена. Определить расстояния от источ­ника волн до точек, в которых будут первые три узла и три пучности стоячей волны, возникшей в результате сложения бегущей и отраженной от стены волн. Скорость J волны считать равной 440 м/с.

Решение. Выберем систе­му координат так, чтобы ось х была направлена вдоль луча бегущей волны и начало О координат совпадало с точкой, находящейся на источнике MN плоской волны (рис. 7.2). С учетом этого, уравнение бегущей волны запишется в виде

Поскольку в точку с координатой х волна возвратится, прейдя дважды расстояние lх, и при отражении от стены, как среды более плотной, изменит фазу на p, то уравнение отраженной волны может быть записано в виде

После очевидных упрощений получим

x2=Acоs[wtk (2lх)]. 2) Сложив уравнения (1) и (2), найдем уравнение стоячей волны:

Воспользовавшись формулой разности косинусов, найдем

Так как выражение Asink(l—х) не зависит от времени, то, взятое по модулю, оно может рассматриваться как амплитуда стоячей волны:

Зная выражение амплитуды, можем найти координаты узлов и пучностей.

Узлы возникнут в тех точках, где амплитуда стоячей волны рав­на нулю:|2Asink(lx)|=0. Это равенство выполняется для точек, координаты xn которых удовлетворяют условию

Но k=2p/l, или, так как l=J/v,

k=2pv/J. (4) Подставив это выражение k в (3), получим

откуда координаты узлов

Подставив сюда значения l,J, v и n=0, 1, 2, найдем координаты первых трех узлов:

Пучности возникнут в тех точках, где амплитуда стоячей волны максимальна: 2Asink(l—х‘)=2А. Это равенство выполняется для точек, координаты хn которых удовлетворяют условию k(l— хn)=(2n+1)(p/2) (п=0, 1, 2, 3, . ). Выразив здесь k по (4), получим

откуда координаты пучностей

Подставив сюда значения l, J, v и n=0, 1, 2, найдем координа­ты первых трех пучностей:

Границы максимальных смещений точек среды в зависимости от их координат изображены на рис. 7.3. Здесь же отмечены коор­динаты х0,, х1, х2 , . узлов и координаты х0, х1, х2 . пуч­ностей стоячей волны.

Рис. 7.3

Пример 3. Источник зву­ка частотой v=18 кГц приб­лижается к неподвижно уста­новленному резонатору, на­строенному на акустическую волну длиной l= 1,7 см. С ка­кой скоростью должен дви­гаться источник звука, чтобы возбуждаемые им звуковые волны вызвали колебания резонатора? Температура T воздуха равна 290 К.

Решение. Согласно принципу Доплера, частота v звука, воспринимаемая прибором (резонатором), зависит от скорости иистисточника звука и скорости ипр прибора. Эта зависимость выража­ется формулой

где J скорость звука в данной среде; v0 — частота звуковых волн, излучаемых источником.

Учитывая, что резонатор остается неподвижным (uпр=0), из формулы (1) получим , откуда

В этом выражении неизвестны значения скорости J звука и час­тоты v.

Скорость звука в газах зависит от природы газа и температуры и определяется по формуле

. (3)

Чтобы волны, приходящие к резонатору, вызвали его колеба­ния, частота v воспринимаемых резонатором волн должна совпадать с собственной частотой vрезрезонатора, т. е.

где vрез —длина волны собственных колебаний резонатора.

Подставив выражения J и v из равенства (3) и (4) в формулу (2), получим

, или .

Взяв значения g=1,4, М ==0,029 кг/моль, а также значения R, Т, vo, lрез и подставив их в последнюю формулу, после вычислений получим

Пример 4. Уровень громкости ln звука двух тонов с частотами v1=50 Гц и v2=400 Гц одинаков и равен 10 дБ. Определить уровень интенсивности Lр и интенсивность I звука этих тонов.

Решение. Искомые в задаче уровни интенсивности, соот­ветствующие частотам v1=50 Гц и v2=400 Гц, определим, пользу­ясь графиком на рис. 7.1. Вторая кривая снизу является кривой уровня громкости, равного 10 дБ. Из точек на горизонтальной оси, соответствующих частотам v1 и v2, восстанавливаем ординаты до кривой уровня громкости в 10 дБ. Значения этих ординат укажут искомые уровни интенсивности: Lр1=60 дБ для частоты v1=50 Гц и Lр2=20 дБ для частоты v2=400 Гц.

Зная уровни интенсивностей Lр1 и Lр2, определим соответствую­щие им интенсивности I1 и I2 по формуле

где I — интенсивность данного звука; I0 — интенсивность, соот­ветствующая нулевому уровню интенсивности (I0=1 пВт/м 2 ).

Из приведенной формулы получим

Подставив сюда значения Lр и I0 и учтя, что 1 пВт/м 2 =lO -12 Bт/м 2 , найдем для v1=50 Гц и v2=400 Гц соответственно lgI1=0,l×60+lg10 -12 =6-12= -6; I1=10 -6 Вт/м 2 и lg I2=0.1×20+lgl0 -12 =2-12= -10; I2=10 -10 Вт/м 2 .

Эти значения I1 и I2 можно получить и по графику, пользуясь шкалой интенсивности звука (на рис. 7.1 правая шкала).

Сопоставим полученные результаты: интенсивность первого тона в 10 4 раз больше интенсивности второго тона; уровень интенсивно­сти первого тона на 40 дБ больше уровня интенсивности второго тона; уровень громкости обоих тонов одинаков и равен 10 дБ.

Задачи

Уравнение плоской волны

7.1. Задано уравнение плоской волны x(х,t)=Acos(wt—kx), где A=0,5 см, (w=628c -1 ,k=2 м -1 . Определить: 1) частоту колеба­ний v и длину волны l 2) фазовую скорость J; 3) максимальные зна­чения скорости max и ускорения max колебаний частиц среды.

7.2. Показать, что выражение x(х,t)=Acos(wt—kx) удовлетворяет волновому уравнению при условии, что w=kJ.

7.3. Плоская звуковая волна возбуждается источником колеба­ний частоты v=200 Гц. Амплитуда А колебаний источника равна 4 мм. Написать уравнение колебаний источника x(0,t), если в на­чальный момент смещение точек источника максимально. Найти смещение x(х,t) точек среды, находящихся на расстоянии x=100 см от источника, в момент t=0,1 с. Скорость J звуковой волны при­нять равной 300 м/с. Затуханием пренебречь.

7.4. Звуковые колебания, имеющие частоту v=0,5 кГц и ам­плитуду A=0,25 мм, распространяются в упругой среде. Длина волны l=70 см. Найти: 1) скорость J распространения волн; 2) мак­симальную скорость max частиц среды.

7.5. Плоская звуковая волна имеет период Т=3 мс, амплитуду A=0,2 мм и длину волны l=1,2 м. Для точек среды, удаленных от источника колебаний на расстояние х=2 м, найти: 1) смещение x(х,t) в момент t=7 мс; 2) скорость и ускорение для того же момента времени. Начальную фазу колебаний принять равной нулю.

7.6. От источника колебаний распространяется волна вдоль прямой линии. Амплитуда A колебаний равна 10 см. Как велико смещение точки, удаленной от источника на х=¾l, в момент, когда от начала колебаний прошло время t=0,9 Т?

7.7. Волна с периодом Т=1,2с и амплитудой колебаний A=2 см распространяется со скоростью J=15 м/с. Чему равно смещение x(х,t) точки, находящейся на расстоянии x=45 м от источника волн, в тот момент, когда от начала колебаний источника прошло время t=4 с?

7.8. Две точки находятся на расстоянии Dх=50 см друг от друга на прямой, вдоль которой распространяется волна со скоростью J=50 м/с. Период Т колебаний равен 0,05 с. Найти разность фаз Dj колебаний в этих точках.

7.9. Определить разность фаз Dj колебаний источника волн, находящегося в упругой среде, и точки этой среды, отстоящей на х=2 м от источника. Частота v колебаний равна 5 Гц; волны рас­пространяются со скоростью J=40 м/с.

7.10. Волна распространяется в упругой среде со скоростью J=100 м/с Наименьшее расстояние Dх между точками среды, фазы колебаний которых противоположны, равно 1 м. Определить час­тоту v колебаний.

7.11. Определить скорость J распространения волны в упругой среде, если разность фаз Dj колебаний двух точек среды, отстоящих друг от друга на Dх=10 см, равна p/3. Частота v колебаний равна 25 Гц.

7.12. Найти скорость J распространения продольных упругих колебаний в следующих металлах: 1) алюминии; 2) меди; 3) воль­фраме.

7.13. Определить максимальное и минимальное значения длины l звуковых волн, воспринимаемых человеческим ухом, соответст­вующие граничным частотам v1=16 Гц и v2=20 кГц. Скорость звука принять равной 340 м/с.

7.14. Определить скорость J звука в азоте при температуре Т=300 К.

7.15. Найти скорость J звука в воздухе при температурах T1=290 К и Т2=350 К.

7.16. Наблюдатель, находящийся на расстоянии l=800 м от ис­точника звука, слышит звук, пришедший по воздуху, на Dt=1,78 с позднее, чем звук, пришедший по воде. Найти скорость J звука в воде, если температура Т воздуха равна 350 К.

7.17. Скорость J звука в некотором газе при нормальных усло­виях равна 308 м/с. Плотность r газа равна 1,78 кг/м 3 . Определить отношение Сpv для данного газа.

7.18. Найти отношение скоростей J1/J2 звука в водороде и угле­кислом газе при одинаковой температуре газов.

7.19. Температура Т воздуха у поверхности Земли равна 300 К; при увеличении высоты она понижается на DT=7 мК на каждый метр высоты. За какое время звук, распространяясь, достигнет вы­соты h=8 км?

Суперпозиция волн

7.20. Имеются два источника, совершающие колебания в одина­ковой фазе и возбуждающие в окружающей среде плоские волны одинаковой частоты и амплитуды (A1=A2=1 мм). Найти амплитуду А колебаний точки среды, отстоящей от одного источника колеба­ний на расстоянии x1=3,5 м и от другого — на x2=5,4 м. Направ­ления колебаний в рассматриваемой точке совпадают. Длина волны l=0,6 м.

* В задачах, где в условии не указана скорость звука и не заданы вели­чины, по которым ее можно вычислить, значение скорости следует брать из табл. 16.

7.21. Стоячая волна образуется при наложении бегущей волны и волны, отраженной от границы раздела сред, перпендикулярной направлению распространения волны. Найти положения (расстоя­ния от границы раздела сред) узлов и пучностей стоячей волны, если отражение происходит: 1) от среды менее плотной; 2) от среды более плотной. Скорость J распространения звуковых колебаний равна 340 м/с и частота v=3,4 кГц.

7.22. Определить длину l бегущей волны, если в стоячей волне расстояние l между: 1) первой и седьмой пучностями равно 15 см; 2) первым и четвертым узлом равно 15 cм

7.23. В трубе длиной l=1,2 м находится воздух при температуре T=300 К. Определить минимальную частоту vmin возможных коле­баний воздушного столба в двух случаях: 1) труба открыта; 2) труба закрыта.

7.24. Широкая трубка, закрытая снизу и расположенная верти­кально, наполнена до краев водой. Над верхним отверстием трубки помещен звучащий камертон, частота v колебаний которого равна 440 Гц. Через кран, находящийся внизу, воду медленно выпускают. Когда уровень воды в трубке понижается на DH=19,5 см, звук камертона усиливается. Определить скорость J звука в условиях опыта.

Рис. 7.4

7.25. Один из способов измерения скорости звука состоит в сле­дующем. В широкой трубке A может перемещаться поршень В.Перед открытым концом трубки A, соединенным с помощью рези­новой трубки с ухом наблюдателя, расположен звучащий камертон К. (рис. 7.4.). Отодвигая поршень В от конца трубки A, наблюдатель отмечает ряд следующих друг за другом увеличении и уменьшении громкости звука. Найти скорость J звука в воздухе, если при часто­те колебаний v=440 Гц двум последовательным усилениям интен­сивности звука соответствует расстояние Dl между положениями поршня, равное 0,375 м.

7.26. На рис. 7.5 изображен прибор, служащий для определения скорости звука в твердых телах и газах. В латунном стержне А, зажатом посередине, возбуж­даются колебания. При опре­деленном положении легкого кружочка

В, закрепленного на конце стержня, пробковый порошок, находящийся в трубке С, расположится в виде небольших кучек на рав­ных расстояниях. Найти скорость J звука в латуни, если расстоя­ние и между кучками оказалось равным 8,5 см. Длина стержня l=0,8 м.

7.27. Стальной стержень длиной l=1 м, закрепленный посереди­не, натирают суконкой, посыпанной канифолью. Определить часто­ту v возникающих при этом собственных продольных колебаний стержня. Скорость J продольных волн в стали вычислить.

7.28. Поезд проходит мимо станции со скоростью u=40 м/с. Частота v0 тона гудка электровоза равна 300 Гц. Определить кажу­щуюся частоту v тона для человека, стоящего на платформе, в двух случаях: 1) поезд приближается; 2) поезд удаляется.

7.29. Мимо неподвижного электровоза, гудок которого дает сигнал частотой v0=300 Гц, проезжает поезд со скоростью и=40 м/с. Какова кажущаяся частота v тона для пассажира, когда поезд приближается к электровозу? когда удаляется от него?

7.30. Мимо железнодорожной платформы проходит электропо­езд. Наблюдатель, стоящий на платформе, слышит звук сирены поезда. Когда поезд приближается, кажущаяся частота звука v1=1100 Гц; когда удаляется, кажущаяся частота v2=900 Гц. Найти скорость и электровоза и частоту v0 звука, издаваемого сиреной.

7.31. Когда поезд проходит мимо неподвижного наблюдателя, высота тона звукового сигнала меняется скачком. Определить отно­сительное изменение частоты Dv/v, если скорость и поезда равна 54 км/ч.

7.32. Резонатор и источник звука частотой v0=8 кГц расположе­ны на одной прямой. Резонатор настроен на длину волны l=4,2 см и установлен неподвижно. Источник звука может перемещаться по направляющим вдоль прямой. С какой скоростью u и в каком направлении должен двигаться источник звука, чтобы возбуждае­мые им звуковые волны вызвали колебания резонатора?

7.33. Поезд движется со скоростью u=120 км/ч. Он дает свисток длительностью t0=5 с. Какова будет кажущаяся продолжитель­ность t свистка для неподвижного наблюдателя, если: 1) поезд приближается к нему; 2) удаляется? Принять скорость звука рав­ной 348 м/с.

* См. сноску на с. 108

7.34. Скорый поезд приближается к стоящему на путях электро­поезду со скоростью и=72 км/ч. Электропоезд подает звуковой сигнал частотой v0=0,6 кГц. Определить кажущуюся частоту v звукового сигнала, воспринимаемого машинистом скорого поезда.

7.35. На шоссе сближаются две автомашины со скоростями u1=30 м/с и u2=20 м/с. Первая из них подает звуковой сигнал час­тотой v1=600 Гц. Найти кажущуюся частоту v2 звука, восприни­маемого водителем второй автомашины, в двух случаях: 1) до встре­чи; 2) после встречи. Изменится ли ответ (если изменится, то как) в случае подачи сигнала второй машиной?

7.36, Узкий пучок ультразвуковых волн частотой v0=50 кГц направлен от неподвижноголокатора к приближающейся подводной лодке. Определить скорость и подводной лодки, если частота v1 биений (разность частот колебаний источника и сигнала, отраженно­го от лодки) равна 250 Гц. Скорость J ультразвука в морской воде принять равной 1,5 км/с.

Энергия звуковых волн *

7.37. По цилиндрической трубе диаметром d=20 см и длиной l=5 м, заполненной сухим воздухом, распространяется звуковая волна средней за период интенсивностью I=50 мВт/м 2 . Найти энергию W звукового поля, заключенного в трубе.

7.38. Интенсивность звука 1=1 Вт/м 2 . Определить среднюю объ­емную плотность энергии звуковой волны, если звук распро­страняется в сухом воздухе при нормальных условиях.

7.39. Мощность N изотропного точечного источника звуковых волн равна 10 Вт. Какова средняя объемная плотность энер­гии на расстоянии г=10 м от источника волн? Температуру Т воздуха принять равной 250 К.

7.40. Найти мощность N точечного изотропного источника звука, если на расстоянии r=25 м от него интенсивность I звука равна 20 мВт/м 2 . Какова средняя объемная плотность энергии на этом расстоянии?

Звуковое давление. Акустическое сопротивление *

7.41. Определить удельное акустическое сопротивление Zs воз­духа при нормальных условиях.

7.42. Определить удельное акустическое сопротивление Zsводы при температуре t=15°C.

*См. сноску на с. 108

7.43. Какова максимальная скорость колебательного дви­жения частиц кислорода, через который проходят звуковые волны, если амплитуда звукового давления p0=0,2 Па, температура Т кислорода равна 300 К и давление p=100 кПа?

7.44. Определить акустическое сопротивление Za воздуха в тру­бе диаметром d=20см при температуре T=300 К и давлении p=200 кПа.

7.45. Звук частотой v=400 Гц распространяется в азоте при тем­пературе T=290 К и давлении p=104 кПа. Амплитуда звукового давления p0=0,5 Па. Определить амплитуду А колебаний частиц азота.

7.46. Определить амплитуду p0 звукового давления, если ампли­туда А колебаний частиц воздуха равна 1 мкм. Частота звука v =600 Гц.

7.47. На расстоянии r=100 м от точечного изотропного источни­ка звука амплитуда звукового давления r0=0,2 Па. Определить мощность P источника, если удельное акустическое сопротивление Zs воздуха равно 420 Па×с/м. Поглощение звука в воздухе не учи­тывать .

7.48. Источник звука небольших линейных размеров имеет мощ­ность Р=1 Вт. Найти амплитуду звукового давления p0 на расстоя­нии r =100 м от источника звука, считая его изотропным. Затуха­нием звука пренебречь.

7.49.В сухом воздухе при нормальных условиях интенсивность I звука равна 10пВт/м 2 . Определить удельное акустическое сопро­тивлениеZs воздуха при данных условиях и амплитуду p0 звуково­го давления.

7.50. Найти интенсивности I1 и I2 звука, соответствующие амп­литудам звукового давления p01=700 мкПа и p02=40 мкПа.

Уровень интенсивности, и уровень громкости звука

7.51. Определить уровень интенсивности Lр звука, если его интенсивность равна: 1) 100 пВт/м 2 ; 2) 10 мВт/м 2 .

7.52. На расстоянии r1=24 м от точечного изотропного источни­ка звука уровень его интенсивности Lр=32 дБ. Найти уровень интенсивности Lр звука этого источника на расстоянии r2=16 м.

7.53. Звуковая волна прошла через перегородку, вследствие чего уровень интенсивности Lр звука уменьшился на 30 дБ. Во сколько раз уменьшилась интенсивность I звука?

7.54. Уровень интенсивности Lр шума мотора равен 60 дБ. Каков будет уровень интенсивности, если одновременно будут ра­ботать: 1) два таких мотора; 2) десять таких моторов?

7.55. Три тона, частоты которых равны соответственно v1=50 Гц, v2=200 Гц и v3=1кГц, имеют одинаковый уровень интен­сивности Lр=40 дБ. Определить уровни громкости LN этих тонов.

7.56. Звук частотой v=1 кГц имеет уровень интенсивности Lр=50 дБ. Пользуясь графиком на рис. 7.1, найти уровни интен­сивности равно громких с ним звуков с частотами: v1=l кГц, v2=5 кГц, v3=2 кГц, v4,=300 Гц, v5 =50 Гц.

7.57. Уровень громкости тона частотой v=30 Гц сначала был LN1 =10 фон, а затем повысился до LN2=80 фон. Во сколько раз увеличилась интенсивность тона?

7.58. Пользуясь графиком уровней на рис. 7.1, найти уровень громкости LN звука, если частота v звука равна 2 кГц и амплитуда звукового давления r0=0,1 Па. Условия, при которых находится воздух, нормальные.

7.59. Для звука частотой v=2 кГц найти интенсивность I, уро­вень интенсивности Lр и уровень громкости LN, соответствующие: а) порогу слышимости; б) порогу болевого ощущения. При решении задачи пользоваться графиком на рис. 7.1.

7.60. Мощность Р точечного изотропного источника звука равна 100 мкВт. Найти уровень громкости LN при частоте v=500 Гц на расстоянии r =10 м от источника звука.

7.61. На расстоянии r =100 м от точечного изотропного источни­ка звука уровень громкости Lр, при частоте v=500 Гц равен 20 дБ. Определить мощность Р источника звука.


источники:

http://www.soloby.ru/476063/%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%BE-%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5-%D0%BF%D0%BB%D0%BE%D1%81%D0%BA%D0%BE%D0%B9-%D0%B2%D0%BE%D0%BB%D0%BD%D1%8B-%D0%BE%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B8%D1%82%D1%8C-%D1%87%D0%B0%D1%81%D1%82%D0%BE%D1%82%D1%83-%D0%BA%D0%BE%D0%BB%D0%B5%D0%B1%D0%B0%D0%BD%D0%B8%D0%B9

http://poisk-ru.ru/s38068t9.html