Закон бернулли для газов уравнение

1 Динамика жидкости и газа Лекционный материал

Главная > Документ

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Уравнение Бернулли для газа

Рассмотрим поток газа, проходящий по трубопроводу переменно­го се­че­ния (рис. 27). В первом сечении приведённое полное давление ра­вно p пр.п1 . При прохождении по трубе часть p пр.п1 необратимо потеря­ется из-за проявле­ния сил внутреннего трения газа и во втором сечении энергетиче­ская хара­к­теристика уменьшится до p пр.п2 на величину потерь давле­ния D p пот .

Уравнение Бeрнулли для газа в простейшем виде записы­вается так:

p пр.п1 = p пр.п2 + D p пот ,

то есть это уравнение для двух сечений потока в направлении его движения, выраженное через приведённые полные давления и отражающее закон со­хра­нения энергии (часть энергии переходит в потери) при движении газа.

Уравнение Бeрнулли в традиционной записи получим, если в по­следнем ра­венстве раскроем значения приведённых полных давлений p пр.п1 и p пр.п2 :

.

Энергетический смысл уравнения Бeрнулли для газа заключается в том, что оно отражает закон сохранения энергии, а геометрический не рассматривается, так как величины в нём выражаются в единицах дав­ления ( Па ), а не на­пора ( м ).

Разность давлений и потери давления

Особенности терминов «разность давлений» и «поте­ри давле­ния » поясним на примерах.

Движение газа происходит только при наличии разности приве­дённых полных давлений

p пр = p пр.п1 — p пр.п2

от точки с большим давлением p пр.п1 к точке с ме­ньшим p пр.п2 . Например, это является условием работы систем естественной вентиляции зданий: для удаления воз­духа из помещения давление p пр.п внутри должно быть боль­ше, чем снару­жи.

Потери давления p пот отражают потерю полной энергии потока при движении газа. Например, чем длиннее воздуховод, меньше его про­ходное сечение, шероховатее его стенки, тем больше будут потери давления в системе вентиляции, что может ухудшить удаление несвежего воздуха из помещений. В покоящемся газе никаких потерь давле­ния нет.

При установившемся движении газа разность давлений равна потерям давления:

p пр = p пот ,

что является уравнением Бернулли в простейшей записи.

Таким образом, «разность давлений » является причиной движения газа, а «потери давления »- следствием. При движении газа они чис­ленно равны. Измеряются они в одних и тех же единицах СИ: паскалях ( Па ).

Два режима движения жидкости (газа) .

Исследование вопроса о механизме движения жидкости (газа) показывает, что в природе существуют два вида (режима) движения жидкости: во-первых, слоистое, упорядоченное или ламинарное движение, при котором отдельные слои жидкости скользят друг относительно друга, не смешиваясь между собой, и, во-вторых, неупорядоченное или турбулентное движение, при котором частицы жидкости движутся по сложным, постоянно меняющимся траекториям и в потоке происходит интенсивное перемешивание микро- и макромасс жидкости. Основной особенностью турбулентного режима течения является наличие поперечных к основному направлению движения составляющих скоростей, накладывающихся на основную скорость в продольном направлении.

Выяснению условий существования ламинарного или турбулентного режима течения жидкости, влияния физических характеристик жидкости на переход из одного режима в другой были посвящены опыты Рейнольдса.

Рейнольдс установил, что основными факторами, определяющими характер режима, являются: средняя скорость движения жидкости , диаметр трубопровода , плотность жидкости , абсолютная вязкость , а переход от ламинарного режима к турбулентному происходит при определенной скорости – критической скорости, различной для труб разных диаметров и возрастающей с увеличением вязкости жидкости и уменьшающейся с уменьшением диаметра трубы.

Для характеристики режима движения жидкости Рейнольдсом был выведен безразмерный параметр , учитывающий влияние перечисленных выше факторов и называемый числом (критерием) Рейнольдса

(1.53)

Так как отношение где — коэффициент кинематической вязкости жидкости (газа), то выражение (1.52) можно записать в виде

(1.54)

Границы существования того или иного режима движения жидкости определяются двумя критическими значениями числа Рейнольдса: нижним критическим числом и верхним критическим числом . При значениях чисел Рейнольдса возможен только ламинарный режим, а при — только турбулентный режим; при наблюдается неустойчивое состояние потока. Таким образом, для определения режима течения необходимо в каждом случае вычислять по выражению (1.53 или 1.54) число Рейнольдса и сопоставлять его с критическим значением.

В опытах самого Рейнольдса значение были следующие: . Последующие эксперименты показали, что критические числа Рейнольдса не являются вполне постоянной величиной и что при определенных условиях неустойчивая зона может быть значительно шире. В настоящее время при практических расчетах принято исходить из одного значения критического числа Рейнольдса, равного , считая, что при всегда имеет место ламинарный режим, а при – всегда турбулентный. При этом движение в неустойчивой зоне исключается из рассмотрения, что приводит к некоторому запасу и большей надежности при гидравлических расчетах в том случае, если в этой зоне в действительности имеет место ламинарный режим течения.

Проведенные исследования особенностей различных режимов движения жидкости показывают, что одновременно с переходом от ламинарного режима к турбулентному изменяется характер распределения скоростей по поперечному сечению потока, а также зависимость потерь энергии (напора). Установлено, что для ламинарного режима характерен параболический закон распределения скоростей по поперечному сечению: скорость жидкости равна нулю непосредственно у стенок трубопровода, а при удалении от них плавно и непрерывно возрастает, достигая максимума на оси трубопровода (рис.3а).

Рисунок 3. Характер распределения скоростей по перечному сечению потока при ламинарном (а) и турбулентном (б) режиме движения.

Турбулентному режиму движения присущ более сложный закон распределения скоростей по поперечному сечению: в пределах большей части поперечного сечения скорость весьма незначительно отличается от максимального значения на оси трубопровода, но при этом начинает резко падать вблизи стенок трубопровода (рис.3б).

Причиной такого более равномерного закона распределения скоростей при турбулентном режиме является наличие поперечных составляющих скоростей частиц жидкости. В результате этого частицы жидкости с большими скоростями на оси потока и с меньшими скоростями на удалении от оси непрерывно сталкиваются, что приводит к выравниванию их скоростей. В тоже время вблизи стенок трубопровода такое взаимное перемещение частиц друг относительно другу нейтрализуется наличием твердой границы (стенки трубопровода), что и обуславливает более интенсивное падение скорости жидкости.

Если обеспечить протекание жидкости по трубопроводу с различной скоростью и замерить при этом величину потерь напора, то графическая зависимость будет иметь следующий вид (рис.4).

Уравнение Бернулли — вывод формулы, физический смысл, примеры использования

Исследования учёного

Даниил Бернулли родился в Голландии в 1700 году. В 1725 году он начал работать на кафедре физиологии, где увлёкся основами теоретической физики. Через 25 лет он возглавил кафедру экспериментальной физики, которой и руководил до конца своих дней. Основным его трудом считается создание теории гидродинамической зависимости, известной как Закон Бернулли. Открытие учёного предвосхитило зарождение молекулярно-кинетического учения поведения газов.

Причиной открытия принципа стало изучение действия закона сохранения энергии в различных ситуациях. Бернулли установил, что давление жидкости в замкнутом пространстве зависит от сечения объекта, в котором она находится. Чем меньше сечение трубы, тем ниже будет созданное давление в пропускаемом через неё жидком веществе.

Этот факт был доказан экспериментально и описан математически.

Правило в математической формулировке имеет вид (pv 2 / 2) + p * g * h + ρ = const, где:

  • p — количество жидкости на единицу объёма;
  • v — скорость движения потока;
  • h — уровень, на который поднят элемент жидкости;
  • ρ — сила, действующая на единицу площади;
  • g — ускорение, придаваемое жидкости под действием притяжения Земли.

Чтобы понять физический смысл уравнения Бернулли, нужно рассмотреть трубу переменного сечения, в которой существует точка А и Б. Первая располагается в широкой части, а вторая — в узкой. В соответствии с уравнением непрерывности скорость V1 в части трубы, имеющей большее сечение, будет меньше, чем скорость жидкости V2 в узком сечении. Если в жидкость поместить прибор для измерения давления, он покажет какое-то значение P1 в точке A и P2 в точке Б. При этом там, где скорость движения жидкости медленнее, давление будет больше.

Объясняется это следующим образом: если V1 больше V2, значит, при движении происходит изменение скорости течения. Представив, что в жидкости находится точка, можно утверждать о её движении с ускорением. Это означает, что на неё действуют силы.

Одна из них совпадает с направлением течения, тем самым ускоряя движение. Обусловлена эта сила разностью давления.

Так как движение происходит от точки А к Б, то и давление возле А будет больше, чем около Б. Эта разность давлений и приводит к ускорению.

Условия действия

Закон применим для условия, при котором соблюдается неразрывность струи воздуха или жидкости. В тех участках потока, где скорость течения больше, давление будет меньше и наоборот. Это утверждение и называется теоремой Бернулли. По сути, закон позволяет установить связь между давлением, скоростью, высотой.

Пусть имеется труба переменного сечения с изменяющейся высотой. Внизу она широкая, а затем сужается. По ней течёт жидкость. Площадь сечения можно обозначить как S1 и S2, а давление участков и скорость движения на них P1, P2, V1, V2. Высота внизу будет равняться S1, а вверху S2.

Выделив участок в трубе с жидкостью, можно сказать, что она движется слева направо и через некоторое время полностью сдвинется в область S2. Изменение положения слева будет равно расстоянию дельта L1, а справа — дельта L2.

Течение является:

  • ламинарным — находящаяся в трубке жидкость перемешивается слоями без хаотических изменений давления и скорости, турбулентность отсутствует;
  • стационарным — распределение скоростей не изменяется с течением времени;
  • скоростным — в движении принимает участие такой параметр, как ускорение;
  • идеальным с несжимаемой жидкостью.

Последнее обозначает, что нет вязкости. Поэтому на жидкость действует только сила упругости и тяжести, а силы трения нет. Система не является замкнутой, а значит закон сохранения энергии применительно к рассматриваемому участку использовать нельзя. Зато вполне можно применить теорему о кинетической энергии.

Для газов уравнение можно использовать лишь в том случае, если их плотность изменяется незначительно. Но касаемо аэродинамики учитывается и то, что изменение давления воздуха гораздо меньше атмосферного. Поэтому уравнение можно применять в аэродинамических расчётах.

Согласно ему, сумма действующих всех сил на тело (рассматриваемый кусок жидкости) равняется изменению кинетической энергии объекта: ΣAi = ΔEk. На нижний участок действует сила давления, выполняющая положительную работу, а на верхний — отрицательную. Кроме этого, действует и сила тяжести. Так как жидкость поднимается, она имеет тоже отрицательный знак. Сила бокового давления перпендикулярна любой точке в системе, поэтому никакого влияния она не оказывает.

Количественная сторона

Исходя из сил, действующих на тело, изменение кинетической энергии можно описать выражением: ΔEk = Ap1 +Ap2 +Ag. Чтобы найти работу, необходимо силу умножить на пройденное расстояние. Поэтому работа силы давления равна произведению самой силы F на модуль перемещения ΔL и косинусу угла между ними: Ap1 = F1* ΔL *1.

Чтобы найти силу, нужно давление умножить на площадь. Значит: Ap1 = p 1 * S1 * ΔL1 = p1V1. Таким же образом находится работа для второго состояния: Ap2 = F1* ΔL2 *(-1) = — p2 * S2 * ΔL2 = -p2 * V2. Жидкость несжимаемая, следовательно: V1=V2=V.

Работу силы тяжести можно вычислить исходя из того, что рассматриваемый кусок жидкости является относительным, то есть он, хотя и не статический, в любом месте будет подвергаться воздействию одинаковой силы тяжести. Верным будет выражение: Ag = — ΔEp = — (m2 * g * h2 — m1 * g * h1) = m1 * g * h1 — m2 * g * h2. Так как жидкость несжимаемая, её плотность не изменится. Отсюда можно утверждать: Ag = ρ * V * g * h1 — ρ * V * g * h2.

Зная количественные показатели всех трёх работ, можно найти изменение кинетической энергии. Из физики известно, что оно равно разнице конечной и начальной энергии. Течение стационарное, значит, скорость с течением времени не изменится. Следовательно, кинетическая энергия будет определяться разницей появившейся энергии в верхней части и ушедшей из нижней области: ΔEk = (m2 * v2 2 )/2 — (m1 * v1 2 ) / 2.

Воспользовавшись тем, что масса равняется произведению плотности на объём, формулу можно привести к виду: ΔEk = (ρ * V * v2 2 )/2 — (ρ * V * v1 2 ) / 2. Теперь найденные выражения для работ нужно подставить в теорему о кинетической энергии. Получится следующее равенство: p1V — p2V + ρ * V * g * h1 — ρ * V * g * h2 = (ρ * V * v2 2 ) / 2 — (ρ * V * v1 2 ) / 2. Разделив левую и правую часть на объём, выражение можно упростить до вида: p1 — p2 + ρ * g * h1 — ρ * g * h2 = (ρ * v2 2 )/2 — (ρ * v1 2 ) / 2 .

То место, где давление p1, некая точка внутри трубки, пусть будет обозначено цифрой один, а там, где p2, — цифрой два. Всё что относится к единице можно записать в левой части, а к двойке — в правой: ρ1 * g * h1 + (ρ * v1 2 ) / 2 = ρ * g * h2 + (ρ * v2 2 ) / 2. Полученная формула показывает, что при переходе в пределе одной линии скорость, давление и высота изменяются. Поэтому в любой точке будет справедливым выражение: ρ1+ ρ * g * h + (ρ * v1) / 2 = const. Это и есть количественное описание уравнения Бернулли для идеальной жидкости.

Применение в гидравлике

Наиболее типичным примером использования уравнения является решение заданий по нахождению скорости вытекания жидкости из отверстия в широком сосуде. Такой ёмкостью называют систему, в которой диаметр сосуда значительно больше размера отверстия. Необходимо найти скорость вытекающей жидкости U1. Известно, что высота столба жидкости, на который действует сила тяжести g, равна h.

Пусть в жидкости, находящейся сверху, имеется точка один. Через некоторое время она окажется внизу в положении два. На верх жидкости давит атмосферное давление, поэтому p1=pатм. Высота в точке один равна h. Скорость U1 считают равной нулю. Давление p2 в точке два будет также равно атмосферному. Так как жидкость опустится на дно, то высота h2 станет нулевой.

Все эти величины следует подставить в уравнение Бернулли. Получится выражение: pатм + ρ * g * h + 0 = pатм + (ρ * U 2 ) / 2 + 0. Атмосферное давление взаимно уничтожается: ρ * g * h = (ρ * U 2 ) / 2. В левой и правой части стоит плотность, на которую можно сократить. Отсюда получается, что вид жидкости значения не имеет. Это может быть: вода, ртуть, расплавленный металл. Эффект от этого не поменяется. Из формулы можно выразить искомое U2. Оно будет равно: U2 = (2 * g * h) ½ .

Интересным фактом является то, что полученный ответ при решении задачи называется формулой Торричелли. Она показывает, что скорость, с которой вытекает жидкость из широкого сосуда, равна скорости тела при свободном падении с той же высоты.

Используя уравнение, можно легко рассчитать давление жидкости на дно и стенки сосуда. В этом случае закон Бернулли является обобщением для формулы гидростатического давления. Пусть имеется сосуд с жидкостью высотой h. Точка, находящаяся наверху, характеризуется давлением p1 = pатм., высотой h1 равной h и скоростью U1. Для точки на дне параметры будут следующие: p2 = p, h2 = 0, U2 = 0. Скорости принимаются равными нулевому значению, так как рассматриваемая жидкость находится в состоянии покоя.

Данные следует подставить в уравнение. В итоге получится равенство: pатм + ρ * g * h + 0 = p + 0 + 0. Из него несложно найти неизвестное: p = pатм + ρ * g * h. Полученный ответ является формулой гидростатического давления и подтверждает закон Паскаля.

Аналогично уравнение Бернулли для потока реальной жидкости используется при расчёте расхода в карбюраторе, пульверизаторе, учёте статического и динамического давления.

Подъёмная сила

Самолёт летает благодаря тому, что набегающий на крыло напор воздуха создаёт подъёмную силу. Её можно рассчитать и оценить с помощью уравнения. Геометрически крыло можно представить в виде плоскости с углом a (угол атаки). На него действует поток воздуха со скоростью U. Частица воздуха ударяет в твёрдую поверхность и отражается от неё. Угол отражения равен углу атаки, а её скорость равняется U’. Нужно рассчитать подъёмную силу. Для этого необходимо выполнить три шага:

  • рассмотреть изменение скорости воздуха;
  • узнать импульс частиц;
  • используя закон Ньютона, определить силу.

В результате получится, что на крыло действует сила, состоящая из двух компонентов: подъёмной силы Fy и аэродинамического сопротивления Fx. Fy = Cy * p * U 2 * S, а Fx = Cx * p * U 2 * S. В формулах С является коэффициентом, а S — площадью крыла.

Для расчёта используется уравнение Бернулли. Выглядеть оно будет следующим образом: Pп. к + (ρ * Uп. к) * 2 / 2 + ρ * g * hп. к = Pн. к + (ρ * Uн. к) * 2 / 2 + ρ * g * hн. к, где: п. к — под крылом, а н. к — над крылом. Это уравнение можно упростить, приняв, что давления над и под крылом примерно одинаковые, поэтому плотность будет также одинаковая. Кроме того, высота крыла довольно маленькая. Исходя из этого, формулу можно упростить, и она примет вид: pп. к-pн.к = (ρ * (Uн.к + Uп. к) * (Uн.к — Uп. к)) / 2 = 2 * U1 * U2. Теперь можно найти подъёмную силу. Для этого разность давлений нужно умножить на площадь крыла: Fy = (pп.к-pн. к) * S.

Таким образом, используя метод, можно рассчитать подъёмную силу, обусловленную эффектом Бернулли. Например, пусть дано, что площадь крыла равна 50 м². Скорость потока воздуха над крылом и под ним соответственно равны: U1 = 320 м/с, U2 = 290 м/с. Найти грузоподъёмность. Для решения задания нужно знать дифференциальную плотность воздуха. Это справочная величина, равная 1,29 кг/м3.

Используя уравнение Бернулли, можно записать: pп. к-pн.к = ρ * (U2н.к — U2п. к). Подъёмная сила равна площади крыла, умноженной на разность давления. Подставив одно выражение в другое, получим рабочую формулу: Fy = ρ * (U2н.к — U2п. к) * S / 2. После выполнения расчёта получится ответ 590 кН. То есть грузоподъёмность самолёта составит порядка 59 тонн.

Реальные вычисления для таких задач довольно сложные, поэтому часто используют онлайн-калькуляторы.

Закон Бернулли для чайников и учёных

Предисловием можно считать «За что физики не любят математиков»: http://proza.ru/2015/11/16/160

а началом — «О прилипании предметов к телу человека»: http://proza.ru/2015/03/06/306

«Наука должна быть весёлая, увлекательная и простая. Таковыми же должны быть и учёные» (П.Л. Капица). и преподаватели. Но более всего наука должна быть честная. И «Ни один человек не должен покидать стены наших университетов без понимания того, как мало он знает» (Роберт Оппенгеймер). и как мало знают учёные. А чтобы так оно и было, нужно срезать профессора математической лженауки на первой же лекции. И прежним занудой он уже не будет. Знаю, что говорю, и привожу очередной пример.

Курс лекций по гидродинамике и аэродинамике начинается с закона Бернулли. Первый вопрос профессору на засыпку: «Что именно измеряют или показывают три трубчатых манометра на картинке вверху — давление в потоках или давление потоков?».

Правильный ответ: неподвижные поверхностные манометры на картинке вверху показывают давление потоков, так как для измерения давления в потоках нужны такие манометры или датчики давления, которые находились бы внутри потоков и двигались вместе с ними. Давление внутри потоков, знаете ли, почти всегда статично. Но таких мобильных манометров, которые могли бы быть неподвижными относительно ламинарных потоков, нет в опытах к теме «Закон Бернулли». Однако вывод сделан такой, словно они есть, словно давление внутри потоков уже измерено. «Для физика должно существовать только то, что измерено» (Нильс Бор). а не то, что можно подумать, придумать, недодумать и сосчитать. Сосчитать то, чего нет, может каждый.

С маленькой лжи, как правило, начинается ложь большая. «Ложь большая» — это теория. Правильных теорий не бывает, поэтому «Никаким количеством экспериментов нельзя доказать теорию, но достаточно одного эксперимента, чтобы её опровергнуть» (А.Э.). Вся научная гидродинамика и аэродинамика опровергаются опытами по измерению давления в потоках.

Профессор, ау-у. Вы нас слышите. В опытах к теме «Закон Бернулли» нет соответствующих выводам измерений. Вы врёте по причине того, что ни один математик не отличает «давление потока» от «давление в потоке». Доказательства — картинки из учебников и глупые формулки под ними.

Так как давление в потоках у теоретиков не измерено, профессору опыт на картинке вверху говорит одно, а нам — другое: «Давление потока на параллельную потоку поверхность всегда тем меньше давления в самом потоке, чем больше скорость потока; а давление потока на поперечную или наклонную поверхность всегда тем больше давления в потоке, чем больше скорость самого потока». И чем наш вывод хуже.

А тем-то он и хуже, что никакой научности и сложности для понимания в нём нет. К тому же, давление потока на поперечную поверхность или «скоростной напор» измеряется с помощью Г-образной «трубки Пито», вставляемой в поток загнутым концом навстречу потоку. Отсюда: давление в самом потоке примерно равно среднему арифметическому от показаний «трубки Пито» и «трубки у Бернулли». Более того, в ньютоновской механике уменьшение силы давления на параллельную потоку или телу поверхность с увеличением скорости потока или тела и одновременное увеличение давления потока или тела на поперечную поверхность можно объяснить простым векторным разложением силы давления потока или тела. Чем больше скорость автомобиля, тем меньше его вес и давление на дорожное полотно; чем больше скорость потока, тем меньше его давление на стенки трубы. Пусть пока будет так.

Конечно, наши выводы профессору будут сильно не по нутру. Но если он будет ещё в состоянии что-то говорить и продолжит настаивать на том, что «С увеличением скорости потока давление внутри потока уменьшается», то срежем его вторым вопросом: «Почему причина и следствие в формулировке общепризнанного закона Бернулли переставлены местами?».

Действительно, так сформулировать общий закон потоков мог только теоретик с математическим складом ума, для которого «Что полумёртвый равен полуживому, что полуживой равен полумёртвому, а «полу-» вообще можно сократить». А для физика и инженера давление всегда первично, а сам поток и его скорость — это всегда лишь следствие. Инженер так никогда не скажет: мол, чем больше скорость потока, тем меньше давление в нём. Для него это утверждение является противоречием здравому смыслу, то есть оксюмороном: дескать, чем выше фонтан, тем меньше давление в трубе. А как скажет инженер?

Инженер скажет: «Поток можно создать двумя противоположными, но равнозначными способами — локальным (или местным) повышением давления и локальным понижением его, потому что любой поток всегда движется в сторону меньшего давления. Это главный закон потоков или аксиома потоков, поэтому давление в потоке всегда стремится к выравниванию с внешним давлением и к уменьшению. При этом чем значительнее перепад и падение давления мы имеем или создаём, тем больше будет и скорость потока».

Можно короче: «Чем больше падение давления в потоке или на данном участке трубы, тем больше здесь и скорость самого потока». И это будет тривиальный закон потоков, у которого уже есть все пять обязательных признаков новой истины: простота, ясность, универсальность, «предсказательная сила» и антинаучность. Опровергнуть этот закон сможет только тот, кто создаст поток жидкости или газа, движущийся из области пониженного давления в область повышенного давления, то есть против действия превосходящих сил давления и упругости. Шутка.

«Тривиальный» — значит, яснее и проще некуда; значит, это закон-аксиома. К примеру, очень значительный перепад давления мы имеем сразу за камерой сгорания ракеты (примерно 250 атмосфер), и только поэтому скорость частиц реактивной струи, как говорят, достигает 3-х км/с. Вопрос профессору: «Что толкает ракету — закон сохранения импульса или асимметричное давление непрерывного взрыва в асимметричной камере сгорания?». Если скажет, что закон, перед вами математик. Стреляйтесь сразу, ибо ничто физическое и реально существующее вы ему объяснить уже не сможете (никто не сможет). «Математики похожи на французов: что бы вы ни сказали, они всё переведут на свой собственный язык. Получится нечто противоположное» (Гёте).

Если скоростной поток жидкости инженеры создают в длинной горизонтальной трубе постоянного сечения, то тут будет так: чем большее давление нагнетается в трубе, тем больше будет скорость потока в трубе при постепенном падении давления в потоке к концу трубы, то есть к расширителю потока. Всё проще простого: наибольшее давление в потоке будет в начале трубы, а наименьшее — в конце, при этом скорость несжимаемого потока будет одинаковой и там, и тут. Постепенное падение давления в потоке будет происходить по причине уменьшения массы (как меры инерции) и веса прокачиваемых жидкостей или газов на различных участках протяжённой трубы по мере приближения к концу трубы.

Любой пожарник скажет, что так оно и есть, ведь давление воды и в вертикальном потоке тоже убывает по мере приближения к концу пожарного рукава по причине уменьшения веса воды в столбе воды. А физик вспомнит ещё и про третий закон Ньютона — «Действие не может быть больше противодействия». «Действие» — это в данном случае сила нагнетаемого давления; а «противодействие» — это масса и вес потока плюс атмосферное давление на противоположном конце трубы. Противодействие уменьшается к концу трубы, и давление в потоке стремится к атмосферному.

Итак, давление в потоке жидкости на разных участках трубопровода всегда различное, а скорость потока всегда одна и та же; давление в жидкости может уменьшаться, а скорость потока при этом может сохраняться. Где тут закон Бернулли для давления в потоках. Законы Ньютона, да, мал-мало есть, а Бернулли нет и близко. Но для математиков закон есть закон, поэтому давление в скоростном потоке у них всегда низкое по всей длине трубопровода. Трубопровод разорвало. и никто не знает почему. А виноват Даниил Бернулли. Но «Кто ж его посадит, он же — па-мят-ник!».

Инженер-аэродинамист сформулирует свой закон потоков примерно так: «Давление потока на параллельную или отрицательно наклонную поверхность всегда тем меньше давления в самом потоке, чем больше скорость потока или поверхности (верхней поверхности крыла); а давление потока на поперечную или положительно наклонную поверхность всегда тем больше давления в самом потоке, чем больше скорость потока или поверхности (нижней поверхности атакующего крыла)». И это будет качественный закон взаимодействия потоков с поверхностями, так как в каждом конкретном случае величина давления потока на поверхность зависит не только от скорости потока, но и от физических свойств потока и поверхности, поэтому она не вычисляется, а только измеряется. Следовательно, математикам и в аэродинамике делать особо нечего.

Так что, два математических закона Бернулли мы отменили. Зато, теперь имеем два основных физических закона потоков — тривиальный и качественный. И всё в этих законах понятно, и всё работает. Профессор «падсталом». Но добьём его математическую лженауку.

Действие этих двух законов во многих опытах и явлениях складывается или накладывается, поэтому наблюдаемый результат нельзя объяснять действием только какого-то одного закона. Но объединённого закона Бернулли или третьего математического закона потоков никогда не было, поэтому как определить «личную долю» каждого закона в результате того или иного опыта к теме «Закон Бернулли» не знает ни один математик. но знает каждый инженер. Он просто измеряет с помощью манометров и динамометров давление в потоке и давление потока при различной скорости потока, а потом лишь сравнивает результаты измерений. и никаких теорий потоков для него словно не существует. Действительно, зачем вычислять, если можно измерить.

Сосчитать то, чего нет, может каждый. и превратить теоретическую физику в то, чего не может быть, чего уже никто не понимает, — тоже. Математические законы Бернулли — это лишь частный случай того, чего не может быть. Впрочем, математик всегда начинает считать, не спев подумать. Сейчас мы в этом снова убедимся.

Если подуть между двумя бумажными листами, подвешенными параллельно друг другу, листы сблизятся и почти сомкнутся. Можно подуть, а можно, наоборот, прососать пылесосом воздух между листами — результат тот же.

Математик Леонард Эйлер назвал этот опыт своего друга Даниила Бернулли «Великим парадоксом», ведь в первом случае листы должны были раздвинуться расширяющимся сжатым потоком. Сам назвал — сам и объяснил. через постоянство суммы потенциальной и кинетической или полной энергии замкнутой системы. Объяснил опять же уменьшение давления в потоке с увеличением скорости потока, а не уменьшение давления потока на листы, то есть объяснил совсем не то, что надо было объяснять. И объяснил опять же математикам, а не инженерам. Инженеры твёрдо знают: давление в потоке выдуваемого из лёгких воздуха не может быть меньше атмосферного давления. А вот давление выдуваемого потока на параллельные листы может быть меньше атмосферного, поэтому листы и смыкаются. Так мы о том и говорим. Кстати, ещё вопросец на засыпку: «С какого места в опытах к теме «Закон Бернулли» начинается «замкнутая система?». Профессор, ау-у. (Правильный ответ: «С головы».)

Качественный закон потоков гласит: «Давление потока на параллельную ему поверхность всегда тем меньше давления в самом потоке, чем больше скорость этого потока и чем больше хаос в движении частиц пограничного слоя потока». Можно короче: «Давление потока на параллельную поверхность всегда тем меньше, чем больше хаос в движении частиц потока».

В этой формулировке уже появилась физическая, а не математическая или теоретическая причина уменьшения давления потока на поверхность — это хаос или беспорядок в движении пограничных частиц потока. Вот почему на результат действия первого или тривиального закона потоков всегда накладывается действие второго или качественного закона, если мы рассматриваем взаимодействие потоков со стенками трубы, например, или с подвешенными листами. Однако давление внутри потока по-прежнему не измерено, а хаос в пограничном слое потока увидеть нельзя… Нет, уже всё можно. Человек, знаете ли, видит мир не глазами и слышит его не ушами.

В гидродинамике давление всегда первично, а скорость потока вторична; в аэродинамике скорость крыла всегда первична, а давление неподвижной атмосферы на него всегда вторично. Плоское крыло самолёта или птицы не изменяет давление в неподвижной атмосфере, а изменяется с увеличением скорости и угла атаки лишь взаимодействие быстрого крыла с атмосферой. Но в наших рассуждениях крыло чаще всего неподвижно, а это атмосфера «набегает» на крыло, словно всё происходит в аэродинамической трубе или в статическом (стационарном) потоке. Просто так нам удобнее рассуждать и объяснять.

У инженеров всё, что летает, делает это по причине совсем небольшой положительной разницы или асимметрии атмосферного давления на крыло. Появление подъёмной силы как раз и обусловлено качественным законом потоков: «Давление атмосферного потока на верхнюю отрицательно наклонную поверхность быстрого крыла тем меньше давления в самой атмосфере, чем больше хаос и разрежение частиц воздуха над ней; а давление потока на нижнюю положительно наклонную поверхность крыла тем больше атмосферного давления, чем больше скорость крыла, его угол наклона или атаки и деформация или уплотнение упругого воздуха под быстрым крылом». Как диагональ делит прямоугольник на два равных треугольника, так и плоское атакующее крыло делит набегающий поток на две самостоятельные и равнозначные причины возникновения подъёмной силы.

Вспомним, атмосферное давление на уровне моря равно 1,0033 кг/см2. Это очень большая сила, которая давит на неподвижное плоское крыло совершенно одинаково и сверху, и снизу. Если атмосферное давление со стороны одной из поверхностей крыла убрать, то со стороны противоположной поверхности тут же возникнет сила равная 10033 кг/м2. Да, 10 тонн на каждый квадратный метр крыла! И что мы имеем: орёл весом 4 кг, имея площадь «несущих поверхностей» как раз 1м2, почти неподвижно парит в вышине при положительной разнице атмосферных давлений на его крылья всего 0,04% от теоретически возможного 1 кг/см2; АН-2 («кукурузник») летает горизонтально на разности 0,4% атмосферного давления; а скоростному современному пассажирскому авиалайнеру для горизонтального полёта достаточно и 5% от 1 кг/см2 или 50 г/см2.

Как инженеры это узнали? Они применили принцип пропорциональности Леонардо да Винчи и разделили вес орла или летательного аппарата на площадь его несущих поверхностей. Вот и всё. А у математиков всё, что летает, летать не может по причине крайне не достаточной (в 6 раз меньше веса самолёта или божьей твари) подъёмной силы, вычисленной ими по самым надёжным математическим законам ньютоновской механики. Можете посмотреть по запросу «Парадокс шмеля», как математики из NASA и британские учёные вычисляли подъёмную силу. Ужас! Знание математической физики сделало их ещё глупее, чем когда они родились. И вообще, математик, считающий себя физиком, — это ноль в квадрате. Считать, что подъёмная сила крыла есть результат сопротивления воздушной среды его движению, в наше время может только профессор математики, а не физики. Читайте по запросу «О математическом идеализме в физике» (это не только мои статьи).

Идеальный или самый эффективный аэродинамический профиль – это «беспрофиль», то есть плоское, как лезвие безопасной бритвы, крыло. И это для передовых инженеров уже аксиома или «новая аэродинамика», а Природа это знала ещё со времён первых летающих насекомых и птеродактилей. Так вот, асимметричное атмосферное давление на совершенно плоское крыло возникает и при его нулевом угле наклона к вектору движения набегающего атмосферного потока, если верхняя поверхность крыла испещрена микроскопическими неровностями, а нижняя – максимально гладкая. В воде «эффект хаоса над крылом» проявляется ещё значительно сильнее.

Это утверждение доказано самой эволюцией живой природы и передовой практикой авиастроения. Смотрим на расправленное крыло любой птицы: сверху оно бархатистое и может играть всеми цветами радуги, что физику говорит о дисперсии света на мельчайших неровностях на поверхности, а снизу – всегда очень плотное, гладкое и со стальным отливом. Смотрим на современный пассажирский «Боинг»: сверху он словно матовый, а снизу – зеркально гладкий. И пусть та положительная разница в атмосферном давлении на крыло, которая возникает только по причине различного качества покрытия его аэродинамических поверхностей, будет и недостаточной для полёта, но именно она и позволит самолёту или птице лететь горизонтально с меньшим углом атаки, то есть с меньшим лобовым сопротивлением, экономя топливо и силы.

Инженеры «Боинга» говорят, что уже экономят на «эффекте хаоса над крылом» до 7-ми процентов топлива, а это огромные деньги. Смотрите фотографии «Боингов» и читайте по запросу «Аэродинамика Боинг». А наши дурни из Сколково одной краской покрывают весь Боинг. Смотрите по запросу «Красим Боинг». Кожа акулы тоже только кажется гладкой, а на ощупь она сравнима с наждачной бумагой. Шершавая кожа способствует образованию хаоса в пограничном слое воды, что ещё больше уменьшает её давление на быструю акулу. И таких примеров «мильён».

«Если ты не можешь объяснить что-либо просто — значит, ты сам этого не понимаешь» (Эйнштейн). или говоришь о том, чего нет, ибо познанное всегда проще непознанного. «Вашу теорию относительности не понимает никто в мире, но Вы всё-таки стали великим человеком» (Чаплин). «Человек, на исправление ошибок которого потребовалось целое десятилетие, — это действительно человек» (Оппенгеймер). Эйнштейн очень много сделал для любителей огромных и сверхмалых чисел и всевозможных формул, но он «наследил» ещё и в аэродинамике.

В рассуждениях Эйнштейна о подъёмной силе («Элементарная теория полёта и волн на воде» 1916. Берлин) есть только верхняя горбатая поверхность крыла и есть закон Бернулли: мол, крыло делит набегающий поток на два потока, из которых верхний, огибающий горб, всегда несколько быстрее прямого нижнего, а раз быстрее, то и меньше давление в нём; дескать, вот вам и положительная или подъёмная разница атмосферного давления на крыло. Но при этом его ни разу не посетила простая мысль вот о чём: при увеличении скорости крыла разница в скорости верхнего и нижнего потока остаётся той же самой, то есть 1/9 — 1/6; закон Бернулли действует и над, и под крылом. и как итог: при увеличении скорости самолёта подъёмная сила по закону Бернулли увеличиваться не может, то есть самолёт на горизонтальных крыльях просто-напросто не взлетит. Однако небольшая подъёмная сила горизонтального горбатого крыла всё же имеет место быть, но не по закону Бернулли, а по причине разрежения и завихрения воздуха за горбом, то есть по качественному закону потоков (отрицательно наклонная поверхность).

Как авторитетные авиаторы ни пытались хоть что-то объяснить знаменитому теоретику про угол атаки крыла и наклон всего самолёта к вектору движения, как о главной причине возникновения положительной разницы атмосферного давления, он лишь снисходительно посмеивался над ними (к примеру, переписка Эйнштейна с испытателем самолётов Паулем Георгом Эрхардтом). Дундуковость учёного всегда начинается с непонимания, незнания или с «незамечания» им сущей простоты и с желания выглядеть умным. Смотрите «Эйнштейн и подъёмная сила, или Зачем змею хвост». «Математика — единственный совершенный метод водить себя за нос» (Эйнштейн). и других — тоже. Вопросы профессору на засыпку: «Почему в рассуждениях теоретиков горбатого профиля закон Бернулли действует только над крылом?»; «Что доказал лейтенант Кульнев, совершивший в 1913 году затяжной горизонтальный полёт на перевернутом гидросамолете?» (Он доказал, что с хорошим движком и дверь полетит — был бы положительный угол атаки.)

Про математика Николая Жуковского и про его «присоединённые вихри», как о причине возникновения подъёмной силы, толкающей крыло снизу вверх, даже упоминать не хочется. Самолёты Эйнштейна и Жуковского — «беременная утка» и «шестикрылый монстр доаэродинамического периода» — не полетели по причине большого паразитного лобового сопротивления очень горбатых крыльев. Но именно они, а не Природа являются основоположниками и «отцами» аэродинамики. А ведь ещё Галилей завещал нам искать подсказки для ответов на все вопросы у Природы и в лабораториях, а не в научных текстах. Смотрите по запросу «Посмеёмся, мой Кеплер, великой глупости людской». «Великая глупость людская» — это глупость учёных. А их, учёных и учителей, и во времена Галилея было, мягко говоря, не мало.

Повторяем только что доказанный вывод: «Давление потока на параллельную ему поверхность всегда тем меньше давления в самом потоке, чем больше скорость этого потока и чем больше хаос в движении частиц пограничного слоя потока». «Степень хаоса» не вычисляется по математическим формулам, а «личная доля» каждого из двух законов потоков в наблюдаемых эффектах уменьшения давления потоков на поверхности с увеличением их скорости в каждом конкретном случае зависит от качества потоков и поверхностей, поэтому при желании тоже только измеряется, но не вычисляется. Вот почему математикам уже делать больше нечего — ни в аэродинамике, ни в объяснениях взаимодействий потоков с поверхностями. Так что, не только «Математика убивает креативность» (Андрей Фурсенко), но и креативность убивает математику. Причём математика убивает креативность всегда, а креативность убивает математику ещё недостаточно часто. «Занимаясь расчётами, ты попадаешь впросак, прежде чем успеваешь это осознать» (Эйнштейн). но чаще этого не замечаешь.

Однако вторым законом потоков объясняются не только опыты к теме «Закон Бернулли», но ещё один раз доказывается нечто совсем другое, позволяющее увидеть истоки математического идеализма в физике и похоронить математическую физику, как науку о природе. «Законы математики, имеющие какое-либо отношение к реальному миру, ненадёжны; а надёжные математические законы не имеют отношения к реальному миру» (А. Эйнштейн). Сейчас мы эту словесную формулу математического идеализма просто-напросто докажем. Вернее, я докажу, а вы. согласитесь.

Невесомые вещества – это хаосы: «Если нет веса у беспорядочно мечущейся частицы, то нет его и у целого» (Левкипп и Демокрит). Древние греки считали воздух невесомым веществом, но даже не все плазмы – это невесомые хаосы: «неорганизованная» плазма – это всем хаосам хаос; а «самоорганизованная» плазма — совсем не хаос. Последняя образуется в замкнутых объёмах или под внешним давлением и состоит из равноудалённых колеблющихся частиц. Напряжением взаимного отталкивания равноудалённых частиц «организованная» плазма способна разорвать любые оболочки или направленным действием пробить любую броню, что и используется инженерами-взрывниками уже довольно давно. (Смотрите по запросу «Самоорганизованная плазма».)

Самый яркий пример «неорганизованной» плазмы – это удалённая от поверхности плазменная атмосфера Солнца или его корона; самый простой пример «организованной» плазмы — пламя свечи, обжатое атмосферным давлением. Но у хаосов нет не только ни веса, ни существенного давления, но они ещё и непрозрачны ни для звука, ни для электромагнитных колебаний. К примеру, «неорганизованная» плазма, окружающая гиперзвуковую ракету, не позволяет управлять ракетой с помощью радиосигналов.

«Все жидкости и газы на Земле имеют вес и находятся под давлением веса собственных и выше расположенных слоёв» (Архимед). Поэтому все прозрачные жидкости и газы состоят из примерно одинаковых, равноудалённых и условно неподвижных (колеблющихся или дрожащих) частиц, находящихся в состоянии взаимного отталкивания и относительного (или чуткого) равновесия и взаимно отталкивающихся в газах на расстояниях много больших, чем в жидкостях. Отсюда: давление в любой точке водоёма или атмосферы равно напряжению взаимного отталкивания равноудалённых частиц в этой точке, и по силе оно равно весу всех частиц над этой точкой. Уберите атмосферное давление, и капля воды тут же исчезнет, разлетевшись на молекулы, а аквариум с водой словно взорвётся. И повинно в том будет как раз-таки «напряжение взаимного отталкивания равноудалённых частиц». Смотрите по запросу «Современный Архимед. Трактат «О плавающих телах» и «К физике антигравитонов». Там есть опыты, позволяющие буквально увидеть неподвижность колеблющихся частиц в жидкостях и в газах. Особенно показателен опыт по мгновенному замерзании переохлаждённой воды при её встряхивании в пластиковой бутылке. Многие его знают, но не понимают.

Способность атомов и молекул к движению взаимного отталкивания пропорциональна температуре. А температура – это «опосредованное мерило» интенсивности атомных и внутриатомных движений и величины гравитационных моментов (квантов, импульсов) атомов, передающихся от атома к атому путём индукции.

Гравитационные моменты у более возбуждённых атомов больше, а у «менее горячих» — меньше. Этими моментами атомы словно дёргают друг друга, понуждая сами себя к взаимному отталкиванию, к синхронности движений и к равновесию. Так осуществляется встречный индукционный или индуктивный теплообмен в природе и в гравитационной физике. О квантовой природе тяготения и отталкивания, электромагнетизма и прочего всего смотрите по запросу «Гравитационная физика. Атом».

Или вы думаете, что теоретики знают об атоме больше инженеров. Отнюдь. «Нет ни малейших признаков того, что атомная энергия когда-нибудь станет доступна людям. Это значило бы, что человек научился расщеплять атом» (Альберт Эйнштейн). «Десять лет моей жизни было потрачено только на то, чтобы полностью избавиться от идей этого человека» (Роберт Оппенгеймер об Эйнштейне и его теориях). Роберт Оппенгеймер — это инженер-изобретатель, «папа атомной бомбы». Он же на вопрос президента Гарри Трумэна «Когда русские смогут сделать атомную бомбу?» ответил: «Никогда». Дескать, в учебниках русских нет и намёка на реальную физику атома. И был абсолютно прав: русские сделали американскую атомную бомбу. Но в наших учебниках ничто не изменилось, словно атомного взрыва и не было. Смотрите по запросу «Гравитационная физика. Атом».

Теперь, думаю, вам уже более понятно — почему с увеличением скорости потока его давление на параллельную поверхность всегда уменьшается. Да, потому что при движении жидкого или газообразного кристалла вдоль шершавой поверхности возникает невесомый беспорядок в движении частиц пограничного слоя этого кристалла. Однако всё, что человек понимает, он когда-то понял сам — даже если ему в этом кто-то помог.

P.S. «Учёные объясняют то, что уже есть; инженеры создают то, чего никогда не было. И всё понятно, и всё работает. Мы же соединяем теорию с практикой: ничто не работает. и никто не знает почему» (Эйнштейн). У теоретиков ничто не работает потому, что у них «самая успешная математическая теория 20-го века» — это кинетическая теория теплоты и давления, не имеющая к физической реальности никакого отношения. Да и вся математическая или теоретическая физика — это то, чего не может быть. А то, что может быть, это — инженерная физика, то есть физика природных и искусственных технологий. И вообще, наука — это логичная совокупность всех явлений и всего известного опыта, а также поиск нового опыта. «Логичная» — значит, простая, явная, последовательная, взаимосвязанная и взаимообусловленная реальность, имеющая общую причинность.

Там, где нет науки, есть научность. Научность появляется именно там, где посредством математических действий и преобразований доказывается возможность невозможного, где одно непонятное объясняется посредством чего-то ещё более непонятного, где кому-то удаётся из очевидного сделать невероятное и где постулируется, то есть берётся за основу, то, что невозможно ни опровергнуть, ни доказать. Это словно злонамеренно рассчитано на то, что глупцам умным и научным кажется лишь то, чего они не понимают. «Конечно, ваша гипотеза безумна. Но достаточно ли она безумна. Если гипотеза недостаточно безумна, науке от неё не будет никакого толку» (Нильс Бор). а учёным — проку.

Простые и разумные идеи нужны только инженерам. И только они знают, что сложных открытий не бывает, что простота ближе к Природе и к пониманию Природы. но истинная простота — это как раз то, что впервые даётся познанию людей труднее всего. Но простота — это ещё и то, что учёным труднее всего объяснить. Более того, простота объяснения того или иного явления или опыта — это для теоретика хуже воровства и большое свинство. Дошло уже то того, что сказать правду учёным может только хам, антисемит и неуч. И только поэтому самым большим парадоксом является то, что этот мир всё же познаваемый (с).

И ещё. Всем теоретикам и преподавателям на засыпку: «Какой теорией руководствовались братья Райт, когда делали свой воздушный винт, который у них получился с КПД 78-80%, если научной аэродинамики ещё не было, а КПД самых современных пропеллеров из дерева не превышает 85%?».

Хотелось бы услышать возражения или замечания, но их почему-то нет. Видимо, с тем, что мы живём в эпоху математических лженаук, уже никто не спорит.

Воображеньем прозорливым
К догадкам верным нас несло…
Но сонм учёных кропотливых
Свернул наш поиск — на число.

И лязгом счёта оглушённый
Забыл наш ум — решенья ключ…
Стал слепнуть, в шоры цифр втеснённый.
А был так зряч и так могуч!

Уж цифре памятник построен,
Распята Истина на нём.
Поклонник счёта, жрец и воин
Простёрся ниц перед числом:

Не осознать бедняге в заблужденье,
Как много лжи за ширмой исчисленья!


источники:

http://nauka.club/fizika/uravneniye-bernulli.html

http://proza.ru/2020/06/20/420