Закон сохранения массы уравнение диффузии

Кратко о гидродинамике: уравнения движения

Написав предыдущий пост, исторический и отчасти рекламный (хотя потенциальные абитуриенты такое вряд ли читают), можно перейти и к разговору «по существу». К сожалению, высокой степени популярности описания добиться вряд ли получится, но всё же постараюсь не устраивать курс сухих лекций. Хотя, от сухости избавиться не удалось, да и пост писался в результате ровно месяц.

В нынешней публикации описаны основные уравнения движения идеальной и вязкой жидкости. По возможности кратко рассмотрен их вывод и физический смысл, а также описаны несколько простейших примеров их точных решений. Увы, этими несколькими примерами доступные аналитически решения уравнений Навье-Стокса в значительной мере исчерпываются. Напомню, что Институт Клэя отнёс доказательство существования и гладкости решений к проблемам тысячелетия. Гении уровня Перельмана и выше — задача вас ждёт.

Понятие сплошной среды

В, если можно так выразиться, «традиционной» гидродинамике, сложившейся исторически, фундаментом является модель сплошной среды. Она отвлекается от молекулярной структуры вещества, и описывает среду несколькими непрерывными полевыми величинами: плотностью, скоростью (определяемой через суммарный импульс молекул в заданном элементе объёма) и давлением. Модель сплошной среды предполагает, что в любом бесконечно малом объёме содержится ещё достаточно много частиц (как принято говорить, термодинамически много — числа, близкие по порядку величины к числу Авогадро — 10 23 шт.). Таким образом, модель ограничена снизу дискретностью молекулярной структуры жидкости, что в задачах типичных пространственных масштабов совершенно несущественно.

Однако, такой подход позволяет описать не только воду в пробирке или водоёме, и оказывается куда более универсальным. Поскольку наша Вселенная на больших масштабах практически однородна, то, как ни странно, она начиная с некоторого масштаба превосходно описывается как сплошная среда, с учётом, конечно же, самогравитации.

Другими, более приземлёнными применениями сплошной среды являются описание свойств упругих тел, динамики плазмы, сыпучих тел. Также можно описывать топлу людей как сжимаемую жидкость.

Параллельно с приближением сплошной среды, в последние годы набирает обороты кинетическая модель, основанная на дискретизации среды на небольшие частицы, взаимодействующие между собой (в простейшем случае — как твердые шарики, отталкивающиеся при столкновении). Такой подход возник в первую очередь благодаря развитию вычислительной техники, однако существенно новых результатов в чистую гидродинамику не превнёс, хотя оказался крайне полезен для задач физики плазмы, которая на микроуровне не является однородной, а содержит электроны и положительно заряженные ионы. Ну и опять же для моделирования Вселенной.

Уравнение неразрывности. Закон сохранения массы

Самый элементарный закон. Пусть у нас есть какой-то совершенно произвольный, но макроскопический объём жидкости V, ограниченный поверхностью F (см. рис.). Масса жидкости внутри него определяется интегралом:

И пусть с жидкостью внутри него не происходит ничего, кроме движения. То есть, там нет химических реакций и фазовых переходов, нет трубок с насосами или чёрных дыр. Ну и всё происходит с маленькими скоростями и для малых масс вещества, потому никакой теории относительности, искривления пространства, самогравитации жидкости (она становится существенна на звёздных масштабах). И пусть сам объём и границы еего неподвижны. Тогда единственное, что может изменить массу жидкости в нашем объёме — это её перетекание через границу объёма (для определённости — пусть масса в объёме убывает):

где вектор j — поток вещества через границу. Точкой, напомним, обозначается скалярное произведение. Поскольку границы объёма, как было сказано, неподвижны, то производную по времени можно внести под интеграл. А правую часть можно преобразовать к такому же, как слева, интегралу по объёму по теореме Гаусса-Остроградского.

В итоге, в обеих частях равенства получается интеграл по одному и тому же совершенно произвольному объёму, что позволяет приравнять подинтегральные выражения и перейти к дифференциальной форме уравнения:

Здесь (и далее) использован векторный оператор Гамильтона. Образно говоря, это условный вектор, компоненты которого — операторы дифференцирования по соответствующим координатам. С его помощью можно очень кратко обозначать разного рода операции над скалярами, векторами, тензорами высших рангов и прочей математической нечистью, основные среди которых — градиент, дивергенция и ротор. Не буду останавливаться на них детально, поскольку это отвлекает от основной темы.

Наконец, поток вещества равен массе, переносимой через единичную площадку за единицу времени:

Окончательно, закон сохранения массы (называемый также уравнением неразрывности) для сплошной среды таков:

Это выражение наиболее общее, для среды, обладающей переменной плотностью. В реальности, эксперимент свидетельствует о крайне слабой сжимаемости жидкости и практически постоянном значении плотности, что с высокой точностью позволяет применять закон сохранения массы в виде условия несжимаемости:

которое с не менее хорошей точностью работает и для газов, пока скорость течения мала по сравнению со звуковой.

Уравнение Эйлера. Закон сохранения импульса

Весь относительно громоздкий процесс колдовства преобразования интегралов, использованный выше, даёт нам не только уравнение неразрывности. Точно такие же по сути преобразования позволяют выразить законы сохранения импульса и энергии, и получить в итоге уравнения для скорости жидкости и для переноса тепла в ней. Однако пока не будем сильно торопиться, и займёмся не просто сохранением импульса, а даже сохранением импульса в идеальной несжимаемой жидкости — т.е. рассмотрим модель с полным отсутствием вязкости.

Рассуждения практически те же самые, только теперь нас интересует не масса, а полный импульс жидкости в том же самом объёме V. Он равен:

При тех же самых условиях, что и выше, импульс в объёме может меняться за счёт:

  • конвективного переноса — т.е. импульс «утекает» вместе со скоростью через границу
  • давления окружающих элементов жидкости
  • просто за счёт внешних сил, например — от силы тяжести.

Соответствующие интегралы (порядок отвечает списку) дают такое соотношение:

Начнём их преобразовывать. Правда, для этого нужно воспользоваться тензорным анализом и правилами работы с индексами. Конкретнее, к первому и второму интегралам применяется теорема Гаусса-Остроградского в обобщённой форме (она работает не только для векторных полей). И если перейти к дифференциальной форме уравнения, то получится следующее:

Крестик в кружочке обозначает тензорное произведение, в данном случае — векторов.

В принципе, это уже уравнение Эйлера, однако его можно чуток упростить — ведь закон сохранения массы никто не отменял. Раскрыв здесь скобки в дифференциальных операторах и приведя затем подобные слагаемые, мы увидим, что три слагаемых благополучно собираются в уравнение неразрывности, и потому дают в сумме ноль. Итоговое уравнение оказывается таким:

Если перейти в систему отсчёта, связанную с движущейся жидкостью (не будем заострять внимание на том, как это делается), мы увидим, что уравнение Эйлера выражает второй закон Ньютона для единицы объёма среды.

Учёт вязкости. Уравнение Навье-Стокса

Идеальная жидкость, это, конечно, хорошо (правда, всё равно точно не решается), но во многих случаях учёт вязкости необходим. Даже в той же конвекции, в течении жидкости по трубам. Без вязкости вода вытекала бы из наших кранов с космическими скоростями, а малейшая неоднородность температуры в воде приводила бы к её крайне быстрому и бурному перемешиванию. Потому давайте учтём сопротивление жидкости самой себе.

Дополнить уравнение Эйлера можно различными (но эквивалентными, конечно же) путями. Воспользуемся базовой техникой тензорного анализа — индексной формой записи уравнения. И пока также отбросим внешние силы, чтобы не путались под руками / под ногами / перед глазами (нужное подчеркнуть). При таком раскладе всё, кроме производной по времени, можно собрать в виде дивергенции одного такого тензора:

По смыслу, это плотность потока импульса в жидкости. К нему и нужно добавить вязкие силы в виде ещё одного тензорного слагаемого. Поскольку они явно приводят к потере энергии (и импульса), то они должны вычитаться:

Идя обратно в уравнение с таким тензором, мы получим обобщённое уравнение движения вязкой жидкости:

Оно допускает любой закон для вязкости.

Принято считать очевидным, что сопротивление зависит от скорости движения. Вязкость же, как перенос импульса между участками жидкости с различными скоростями, зависит от градиента скорости (но не от самой скорости — тому мешает принцип относительности). Если ограничиться разложением этой зависимости до линейных слагаемых, получится вот такой жутковатый объект:

в котором величина перед производной содержит 81 коэффициент. Однако, используя ряд совершенно разумных предположений об однородности и изотропности жидкости, от 81 коэффициента можно перейти всего к двум, и в общем случае для сжимаемой среды, тензор вязких напряжений равен:

где η (эта) — сдвиговая вязкость, а ζ (зета или дзета) — объёмная вязкость. Если же среда ещё и несжимаема, то достаточно одного коэффициента сдвиговой вязкости, т.к. второе слагаемое при этом уходит. Такой закон вязкости

носит название закона Навье, а полученное при его подстановке уравнение движения — это уравнение Навье-Стокса:

Точные решения

Главной проблемой гидродинамики является отсутствие точных решений её уравнений. Как бы с этим ни боролись, но получить действительно всеобщих результатов не удаётся до сих пор, и, напомню, вопрос существования и гладкости решений уравнений Навье-Стокса входит в список Проблем тысячелетия института Клэя.

Однако, несмотря на столь грустные факты, некоторые результаты есть. Здесь будут представлены далеко не все, а лишь самые простые случаи.

Потенциальные течения

Особый интерес представляют течения, в которых жидкость не завихряется. Для такой ситуации можно отказаться от рассмотрения векторного поля скорости, поскольку она выражается через градиент скалярной функции — потенциала. Потенциал же удовлетворяет хорошо изученному уравнению Лапласа, решение которого полностью определяется тем, что задано на границах рассматриваемой области:

Более того, при отсутствии вязкости из уравнения Эйлера можно однозначно выразить и давление, что вовсе замечательно и приводит нас к полному решению задачи. Ах, если бы так было всегда… то гидродинамики, наверное, уже бы и не было как современной и актуальной отрасли.

Дополнительно можно упростить задачу предположением, что течение жидкости двумерно — скажем, всё движется в плоскости (x,y), и ни одна частица не перемещается вдоль оси z. Можно показать, что в таком случае скорость может быть также заменена скалярной функцией (на этот раз — функцией тока):

которая при потенциальном течении удовлетворяет условиям Коши-Лагранжа из теории функций комплексной переменной и воспользоваться соответствующим математическим аппаратом. Полностью совпадающим с аппаратом электростатики. Теория потенциальных течений развита на высоком уровне, и в принципе хорошо описывает большой спектр задач.

Простые течения вязкой жидкости

Решения для вязкой жидкости чаще всего удаётся получить, когда из уравнения Навье-Стокса благодаря свойствам симметрии задачи выпадает нелинейное слагаемое.

Сдвиговое течение Куэтта

Самая элементарная задачка. Канал с неподвижной нижней и подвижной верхней стенкой, которая движется равномерно с некоторой скоростью. На границах жидкость прилипает к ним, так что скорость жидкости равна скорости границы. Этот результат является экспериментальным фактом, и как-то даже авторы первых экспериментов не упоминаются, просто — по совокупности экспериментов.

В такой ситуации от уравнения Навье-Стокса останется уравнение вида v» = 0, и потому профиль скорости в канале окажется линейным:

Данная задача является практически базовой для теории смазки, т.к. позволяет непосредственно определить силу, которую требуется приложить к верхней стенке для её движения с конкретной скоростью.

Течение Пуазейля

Вторая по элементарности — ламинарное течение в канале. Или в трубе. Результат оказывается один — профиль скорости является параболическим:

На основе решения Пуазейля можно определить расход жидкости через сечение канала, но, правда, только при ламинарном течении и гладких стенках. С другой стороны, для турбулентного потока и шероховатых стенок точных решений нет, а есть лишь приближённые эмпирические закономерности.

Стекание слоя жидкости по наклонной плоскости

Тут — почти как в задаче Пуазейля, только верхняя граница жидкости будет свободной. Если предположить, что по ней не бегут никакие волны, и вообще сверху нет трения, то профиль скорости будет практически нижней половинкой предыдущего рисунка. Правда, если из полученной зависимости вычислить скорость течения для средней равнинной речки, она составит около 10 км/с, и вода должна самопроизвольно отправляться в космос. Наблюдаемые в природе низкие скорости течения связаны с развитой завихренностью и турбулентностью потока, которые эффективно увеличивают вязкость воды примерно в 1 млн. раз.

В следующем посте планируется рассказать о законе сохранения энергии и соответствующих ему уравнениях переноса тепла при течении жидкости.

Закон сохранения массы.

Суммарное количество массы в изолированной системе неизменно:

Рассмотрим закон сохранения массы для открытых систем.

Интегральная форма (материальный баланс).

Изменение массы в некором фиксированном объеме V вызывается разностью прихода и отвода массы из выделенного объема:

(2.29)

Через массовый расход: G =

= G вх — G вых (2.30)

Для i-го компонента:

= Gi вх – Gi вых + (2.31)

Здесь Vmi масса компонента i, образующаясяв еденице объема за еденицу времени.

Локальная форма сохранения массы.

z

Массовый расход среды, входящий в объем dV в напралении оси X через левую площадь dy dz (рис.2.4.):Gx вх = j m x dydz , а выходящий через противоположную площадь dydz.

Gx вых = j m x + dx dydz = ( j m x + ) dydx (2.31)

Иззменение массы в объеме dV за счет переноса по направлению X :

Gx вх – Gx вых = — dxdydz = — (2.32)

Суммараное изменение массы в объеме dV равно сумме изменений по всем трем осям:

G вх – G вых = (2.33)

Изменение массового расхода в объеме dV только за счет изменения плотности:

G вх – G вых = dV (2.34)

= 0 (2.35)

) (2.36)

Уравнение неразрывности для сжимаемой среды.

Если плотность постоянная:

( W )=0 (2.37)

Уравнение неразрывности для несжимаемой среды.

В многокомпонентной системе закон сохранения i-го компонента:

(2.38)

Здесь tmi – изменение массы компонента i за счет источника (хим. реакция).

В общем случае закон сохранения массы применительно к единичному объему можно сформулировать следующим образом:

Скорость Результирующая источник

Накопления = скорость поступления + массы

Для многокомпонентных систем уравнение записывают обычно для потока вещества и тогда вместо плотностей используются мольные концентрации компонентов:

(2.39)

где mi – мольная масса компонента i.

При отсутствии источника массы, с учетом выражения для потока компонента, нестационарная конвективная диффузия записывается уравнением:

(2.40)

Распишем уравнение (2.40):

(2.41)

При допущении Dij =const и равенстве нулю среднемассовой скорости получим:

(2.42)

Это и есть второй закон Фика.

Для стационарной диффузии

= 0 (2.43)

2.1.5.2 Закон сохранения массы.

Изолированная система не обменивается с окружающей средой массой и энергией; поэтому суммарная энергия этой системы постоянна:

E = const , E = 0, = 0

Рассмотрим закон сохранения энергии для открытой системы.

Интегральная форма закона сохранения энергии(первый закон термодинамики).

Изменение энергии в системе вызывается разностью прихода и расхода энергии. Учитывая, что энергия может передаваться в форме теплоты и работы можно записать:

E ¢ = (Q ¢ T пр — Q ¢ T расх ) + (A ¢ пр — A ¢ расх )

Или

dE ¢ = d Q ¢ — d A¢ (2.44)

E¢ — штрих означает, что E отнесена к еденице массы.

dА¢ = (А¢пр — А¢расх) работа совершаемая над системой, поэтому перед dА¢ в уравнение (2.44) знак « — ».

Энергия системы складывается из внутренней U, кинетической Eк и потенциальной Еп. Если потенциальная энергия обусловлена полем силы тяжести, то Е¢п = gh:

Е ¢ = U ¢ + W 2 /2 + gh (2.45)

Работа может совершаться движущейся средой по преодолению внешнего давления и трения:

d А ¢ = d ( P / r ) + d A ¢ тр (2.46)

Тогда с учетом (2.45) и (2.46) уравнение (2.44) можно переписать:

d Q ¢ T = dE ¢ + d A ¢ = dU ¢ + d( ) + + gdh + d A ¢ тр (2.47)

Рассмотрим частный случай закона сохранения энергии. Для изотермической идеальной жидкости (трение отсутствует, теплообмена с окружающей средой тоже нет) можно записать:

d ( ) + + gdh = 0 (2.48)

После интегрирования получим:

+ + gh = const (2.49)

Это и есть уравнение Бернулли, выражающее закон сохранения маханической энергии одиночной массы среды.

Локальная форма закона сохранения энергии.

Локальное уравнение сохранения энергии можно получить для единичного объема следующим образом:

Скорость результирующая скорость скорость Накопления = скорость совершения совершения

Энергии подвода — работы — работы

энергии против сил против сил

Переносимая субстанция – энергия еденичного объема rЕ¢. Тогда:

(2.50)

На практике при рассмотрении процесса переноса тепла в изобарных условиях можно пренебречь работой по преодолению сил трения и изменением механической энергии, тогда можно записать:

( ) (2.51)

В этих условиях rE¢ = CprT. Раскрывая выражения и получим:

(2.52)

В частном случае ламинарного движения и постоянства теплофизических характеристик (Cp, r, l = const, lT = 0)

Это уравнеие упрощается:

= Ñ 2 T (2.53)

Здесь = — коэффициент молекулярной температуропроводности. Распишем уравнение (2.53):

— Уравнение Фурье-Кирхгофа.

При теплопереносе в неподвижной среде (W = 0) получим уравнение нестационарной теплопроводности Фурье:

= aÑ 2 T (2.54)

Для случая стационарного переноса тепла получено:

Решение дифференциальных уравнений, полученных на основе закона сохранения совместно с условиями однозначности, позволяет получить поля температуры и поток тепла в аппарате.

Тема №10 Кинетика диффузионных процессов в твердых телах. Определение диффузии. Первое и второе уравнения Фика

Кинетика диффузионных процессов в твердых телах.

Определение диффузии. Первое и второе уравнения Фика.

Определим диффузию как процесс переноса вещества из одной части системы в другую, происходящий под действием градиента концентрации. Отметим, однако, что градиент концентрации – важная, но не единственная причина, вызывающая перенос вещества в системе.

При свободной диффузии не взаимодействующих между собой частиц (в отсутствии приложенных внешних сил) в однородном и изотропном твердом теле поток диффузионных частиц пропорционален градиенту концентрации (для одномерного случая). Связь между ними определяется первым законом Фика:

, (10.1)

где — коэффициент диффузии атомов. Из выражения (10.1) можем определить коэффициент диффузии как скорость, с которой система способна при заданных условиях сделать нулевой разность концентраций. Знак “минус” в выражении означает, что поток атомов направлен из области с большей концентрацией в область с меньшей концентрацией. Для трехмерной задачи первое уравнение Фика имеет вид:

, (10.2)

где — оператор Набла, который записывается .

В случае независимости коэффициента диффузии от концентрации легирующих частиц, применение закона сохранения вещества при диффузии в форме уравнения непрерывности для потока частиц позволяет перейти ко второму уравнению Фика, устанавливающему связь между концентрацией диффундирующих частиц в различных точках тела и временем диффузии:

. (10.3)

Для трехмерного случая:

или , (10.4)

где — оператор Лапласа, который записывается .

Второй закон Фика, как закон сохранения вещества, можно записать в форме уравнения непрерывности:

. (10.5)

Размерность плотности потока вещества зависит от размерности концентрации. Если , то .

Одним из основных параметров диффузии является коэффициент диффузии, вводимый как коэффициент пропорциональности между потоком и градиентом концентрации вещества в уравнении (10.1). В зависимости от условий проведения диффузионного опыта, различают несколько типов коэффициента диффузии.

1. Для описания взаимной диффузии при контакте двух образцов неограниченно растворимых один в одном, пользуются понятием коэффициента взаимной диффузии , который зависит от подвижности взаимно диффундирующих компонентов и взаимодействия компонентов между собой.

2. Подвижность каждого компонента в свою очередь характеризуется собственным коэффициентом диффузии , равным коэффициенту взаимной диффузии, если собственные коэффициенты диффузии компонентов равны между собой, т. е. (в случае двух компонентов и ).

3. Кроме того, подвижность — того компонента сплава может быть охарактеризована порциальными коэффициентами диффузии , которые вводятся следующим образом:

. (10.6)

Порциальные коэффициенты можно определить как для собственной, так и для взаимной диффузии. Все введенные до сих пор коэффициенты являются коэффициентами гитеродиффузии (химической диффузии), т. е. такой диффузии, которая имеет место при наличии только градиента концентрации.

Диффузия в реальных кристаллах происходит вследствие четырех основных механизмов:

1. Для идеальных кристаллов процесс диффузии предполагает простой обмен местами между соседними атомами вещества. В этом случае необходимо затратить значительную энергию (порядка энергии связи между соседними атомами решетки).

2. Для примесей внедрения характерно перемещение атомов по междоузлиям из-за наличия в системе некоторой концентрации дефектов.

3. При вакансионном механизме диффузии один из соседних атомов занимает близлежащую вакансию. Вакансии могут образовываться вследствие того, что некоторые атомы, совершающие тепловые колебания около положения равновесия, могут иметь энергию, значительно превышающую среднюю энергию связи. Такие атомы уходят из узлов решетки в междуузельное пространство, образуя вакансию. Такая вакансия перемещается в кристалле путем последовательного заполнения ее другими атомами.

4. Возможна также диффузия по междоузлиям путем вытеснения, когда атом выталкивает одного из ближайших соседей в междоузлие, а сам занимает его место в решетке.

Таким образом, мы видим, что в твердых телах благодаря тепловому движению происходит непрерывное перемешивание частиц. Скорость перемешивания зависит от среднего времени нахождения частицы в одном из положений равновесия. Это время экспоненциально зависит от температуры:

, (10.7)

где — энергия активации диффузии; — постоянная, равная по порядку величины периоду собственных колебаний атомов в узлах решетки . Энергия активации диффузии представляет собой высоту потенциального барьера, который должна преодолевать частица, чтобы перейти из одного положения в другое. Так как с изменением температуры изменяются межатомные силы в кристаллах, то энергия активации сильно зависит от температуры. Приближенно эту зависимость можно представить соотношением , где — энергия активации при К, а коэффициент зависит от характера колебаний атомов.

В большинстве случаев коэффициент диффузии в твердых телах увеличивается с ростом температуры по закону, имеющему вид уравнения Аррениуса:

, (10.8)

где — предэкспоненциальный множитель (фактор), численно равный коэффициенту диффузии при бесконечно большой температуре.

Процессы взаимной диффузии в поликристаллических пленках металлов приводят к образованию интерметаллидов. При этом можно выделить следующие изменения их свойств:

1. Образуются металлические слои, структура которых имеет большое количество дефектов, через которые возможна диффузия примесей и газов.

2. Электронные характеристики пленок металлов из-за образования твердых растворов металлов и соединений изменяются.

3. Меняется толщина и состав переходного слоя.

4. Возможно развитие неоднородностей в слоях металлов и в переходном слое из-за неравномерности взаимной диффузии металлов через границу раздела.

Отмеченные выше процессы приводят к деградации электрических параметров и зависят от количества продиффундированного в структуру вещества. Поэтому особенно важно уметь находить зависимости распределения концентрации диффундирующих примесей в структурах от времени и температуры процесса диффузии. Это можно сделать, решив второе уравнение Фика или уравнение диффузии.

Уравнение диффузии представляет собой дифференциальное уравнение в частных производных и для его решения необходимо сформулировать начальные и граничные условия, которым должна удовлетворять концентрация и первоначальное распределение диффундирующего вещества. Эти условия определяют на основе анализа конкретной ситуации, в которой происходит процесс диффузии. Здесь важно отметить, что внутри твердого тела концентрация является непрерывной функцией координат и времени, а ее первая производная по времени и первая и вторая производные по координатам , и также непрерывны. Указанные предположения не применимы для поверхности твердого тела, для внутренних границ раздела и для некоторого момента времени, с которого начинается поступление диффундирующего вещества. В этих точках и в этот моменты времени концентрация и ее производные могут претерпевать разрыв.

Начальное распределение концентрации может быть произвольным, но чаще всего эта функция постоянна либо равна нулю. Что касается граничных условий (условий на поверхности), то обычно в задачах диффузии задана либо концентрация на поверхности , либо поток . В частных случаях эти величины могут быть постоянными либо равными нулю.

Уравнение диффузии (в физике его чаще называют уравнением теплопроводности) можно решить различными методами. Обычно в практике пользуются следующими методами его решения:

1. Метод разделения переменных (Фурье).

2. Операторный метод (Лапласа – Карсона – Хевисайда).

3. Метод источника (метод функций Грина).

4. Численные методы.

5. Метод Монте – Карло.

Следует отметить, что в настоящее время сам процесс диффузии в технологии изготовления полупроводниковых приборов и ИМС усовершенствован до такой степени, что можно создавать переходы, глубина которых контролируется с точностью до долей микрометра.

Контрольные вопросы

1. Что такое диффузия?

2. Как записывается первое уравнение Фика?

3. Как записывается второе уравнение Фика?

4. Что такое коэффициент диффузии?

5. Какие различают типы коэффициентов диффузии?

6. Как записывается зависимость изменения коэффициента диффузии от температуры в твердом теле?

7. Как процессы взаимной диффузии и образование при этом интерметаллидов изменяют свойства пленок металлов?

8. Как можно задавать начальное распределение концентрации и граничные условия (условия на поверхности) при решении уравнения диффузии?


источники:

http://megaobuchalka.ru/13/32166.html

http://pandia.ru/text/80/099/45272.php