Закон сохранения массы уравнение расхода

Основные законы и уравнения гидромеханики.

1. Основные законы гидромеханики.

Закон сохранения массы и интегральной, векторной и дифференциальной формах. Уравнение неразрывности потока.

2. Закон изменения количества движения жидкости в интегральной, векторной и дифференциальной формах. Основное уравнение движения жидкости в векторной форме.

Рассмотрим в интегральной форме основные законы гидромеханики: закон сохранения массы, закон изменения количества движения и закон изменения момента количества движения для пространственного потока вязкой сжимаемой жидкости.

Применим к рассматриваемому объёму подход Лагранжа.

Для этого рассмотрим в данном потоке подвижный деформируемый объём жидкости V(t), состоящий из одних и тех же частиц жидкости. Пусть площадью поверхности S(t), имеющий в каждой подвижной точке плотность ρ и скорость v. Движение этого объёма будем рассматривать в неподвижной системе координат. Здесь x, y, z – координаты неподвижных фиксированных точек пространства Эйлера.

Обозначим как ранее F, Р – главные векторы массовых и поверхностных сил, действующих на этот объём

Закон сохранения массы жидкости:

Пусть в объёме V(t) – отсутствуют какие либо источники массы и энергии. «В любом подвижном объёме V(t), состоящем из одних и тех же частиц, масса жидкости сохраняется». Масса элементарно частицы с объёмом dV равна:

Здесь ρ – плотность жидкости.

Масса всех частиц в объёме V(t) равна:

(4.1)

Так как объём V состоит из одних и тех же частиц

Закон сохранения массы для потока в интегральном виде:

(4.2)

Получим этот же закон в дифференциальной форме:

В векторном анализе доказывается, что для любой вектор – функции , заданной в подвижном объёме V(t) с известным полем скоростей потока

(4.3)

Здесь — вектор скорости,

— проекции вектора скорости υ на нормаль поверхности.

Возьмём вместо ƒ плотность ρ. Получим:

Учитывая соотношение (4.2) получим:

Так как V(t) – объём произвольный, то

(4.4)

Это уравнение есть закон сохранения массы для потока в дифференциальном виде.

Его называют ещё уравнением неразрывности или сплошности потока. Если жидкость несжимаемая, .

(4.5)

Отсюда из (4.4) получим

Или ρ=const или (4.6)

Условие не сжимаемости для жидкости и газа.

Условия сохранения массы для одномерного стационарного потока в алгебраическом виде.

Для стационарного потока масса жидкости, которая проходит через любое сечение канала за одно и то же время одна и та же.

Отсюда следует, что если S↓, то υ↓

Вывод: «В узком сечении скорость всегда больше, а в широком – меньше».

2. Закон изменения количества движения жидкости для потока.

Закон изменения количества движения для частицы жидкости постоянной массой m записать в виде:

(4.9)

Здесь — главные векторы массовых и поверхностных сил.

Это соотношение называют уравнением движения частиц в векторной форме. По аналогии можно записать этот закон для подвижного объёма V(t) с массой M.

(4.10)

Это уравнение движения объёма жидкости в интегральной форме в самом общем виде. Здесь V(t) – подвижный деформируемый объём, состоящий из одних и тех же частиц среды. Перейдём от интегральной формы записи этого закона к его дифференциальной форме для любой точки подвижного объёма.

Так как то по теореме Гаусса – Остроградского:

(4.11)

Подставим это равенство в (4.10) . Получим:

Можно показать, что

Так как V(t) – произвольный объём, то интеграл от функции только тогда равен нулю, когда подинтегральная функция равна нулю. Отсюда

(4.12)

Это главное основное дифференциальное уравнение движения жидкости для произвольной фиксированной подвижной точки жидкости.

Основное уравнение гидростатики

Если жидкость неподвижна, то

(4.13)

Это основное уравнение гидростатики.

В векторной форме переход к переменной Эйлера.

Ускорение в точке (индивидуальная, субстанциональная, полная производная).

Локальная (местная) производная — конвективная.

Внимание! Здесь — ускорение производная подвижной точки жидкости, при условии, что — скорость задана в произвольной, одной и той де точки пространства переменных Эйлера.

Тогда

Ускорение в точке жидкости.

|следующая лекция ==>
Темперамент и характер|Уравнения пространственного движения реальных жидкостей и газов

Дата добавления: 2015-12-29 ; просмотров: 3963 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Кратко о гидродинамике: уравнения движения

Написав предыдущий пост, исторический и отчасти рекламный (хотя потенциальные абитуриенты такое вряд ли читают), можно перейти и к разговору «по существу». К сожалению, высокой степени популярности описания добиться вряд ли получится, но всё же постараюсь не устраивать курс сухих лекций. Хотя, от сухости избавиться не удалось, да и пост писался в результате ровно месяц.

В нынешней публикации описаны основные уравнения движения идеальной и вязкой жидкости. По возможности кратко рассмотрен их вывод и физический смысл, а также описаны несколько простейших примеров их точных решений. Увы, этими несколькими примерами доступные аналитически решения уравнений Навье-Стокса в значительной мере исчерпываются. Напомню, что Институт Клэя отнёс доказательство существования и гладкости решений к проблемам тысячелетия. Гении уровня Перельмана и выше — задача вас ждёт.

Понятие сплошной среды

В, если можно так выразиться, «традиционной» гидродинамике, сложившейся исторически, фундаментом является модель сплошной среды. Она отвлекается от молекулярной структуры вещества, и описывает среду несколькими непрерывными полевыми величинами: плотностью, скоростью (определяемой через суммарный импульс молекул в заданном элементе объёма) и давлением. Модель сплошной среды предполагает, что в любом бесконечно малом объёме содержится ещё достаточно много частиц (как принято говорить, термодинамически много — числа, близкие по порядку величины к числу Авогадро — 10 23 шт.). Таким образом, модель ограничена снизу дискретностью молекулярной структуры жидкости, что в задачах типичных пространственных масштабов совершенно несущественно.

Однако, такой подход позволяет описать не только воду в пробирке или водоёме, и оказывается куда более универсальным. Поскольку наша Вселенная на больших масштабах практически однородна, то, как ни странно, она начиная с некоторого масштаба превосходно описывается как сплошная среда, с учётом, конечно же, самогравитации.

Другими, более приземлёнными применениями сплошной среды являются описание свойств упругих тел, динамики плазмы, сыпучих тел. Также можно описывать топлу людей как сжимаемую жидкость.

Параллельно с приближением сплошной среды, в последние годы набирает обороты кинетическая модель, основанная на дискретизации среды на небольшие частицы, взаимодействующие между собой (в простейшем случае — как твердые шарики, отталкивающиеся при столкновении). Такой подход возник в первую очередь благодаря развитию вычислительной техники, однако существенно новых результатов в чистую гидродинамику не превнёс, хотя оказался крайне полезен для задач физики плазмы, которая на микроуровне не является однородной, а содержит электроны и положительно заряженные ионы. Ну и опять же для моделирования Вселенной.

Уравнение неразрывности. Закон сохранения массы

Самый элементарный закон. Пусть у нас есть какой-то совершенно произвольный, но макроскопический объём жидкости V, ограниченный поверхностью F (см. рис.). Масса жидкости внутри него определяется интегралом:

И пусть с жидкостью внутри него не происходит ничего, кроме движения. То есть, там нет химических реакций и фазовых переходов, нет трубок с насосами или чёрных дыр. Ну и всё происходит с маленькими скоростями и для малых масс вещества, потому никакой теории относительности, искривления пространства, самогравитации жидкости (она становится существенна на звёздных масштабах). И пусть сам объём и границы еего неподвижны. Тогда единственное, что может изменить массу жидкости в нашем объёме — это её перетекание через границу объёма (для определённости — пусть масса в объёме убывает):

где вектор j — поток вещества через границу. Точкой, напомним, обозначается скалярное произведение. Поскольку границы объёма, как было сказано, неподвижны, то производную по времени можно внести под интеграл. А правую часть можно преобразовать к такому же, как слева, интегралу по объёму по теореме Гаусса-Остроградского.

В итоге, в обеих частях равенства получается интеграл по одному и тому же совершенно произвольному объёму, что позволяет приравнять подинтегральные выражения и перейти к дифференциальной форме уравнения:

Здесь (и далее) использован векторный оператор Гамильтона. Образно говоря, это условный вектор, компоненты которого — операторы дифференцирования по соответствующим координатам. С его помощью можно очень кратко обозначать разного рода операции над скалярами, векторами, тензорами высших рангов и прочей математической нечистью, основные среди которых — градиент, дивергенция и ротор. Не буду останавливаться на них детально, поскольку это отвлекает от основной темы.

Наконец, поток вещества равен массе, переносимой через единичную площадку за единицу времени:

Окончательно, закон сохранения массы (называемый также уравнением неразрывности) для сплошной среды таков:

Это выражение наиболее общее, для среды, обладающей переменной плотностью. В реальности, эксперимент свидетельствует о крайне слабой сжимаемости жидкости и практически постоянном значении плотности, что с высокой точностью позволяет применять закон сохранения массы в виде условия несжимаемости:

которое с не менее хорошей точностью работает и для газов, пока скорость течения мала по сравнению со звуковой.

Уравнение Эйлера. Закон сохранения импульса

Весь относительно громоздкий процесс колдовства преобразования интегралов, использованный выше, даёт нам не только уравнение неразрывности. Точно такие же по сути преобразования позволяют выразить законы сохранения импульса и энергии, и получить в итоге уравнения для скорости жидкости и для переноса тепла в ней. Однако пока не будем сильно торопиться, и займёмся не просто сохранением импульса, а даже сохранением импульса в идеальной несжимаемой жидкости — т.е. рассмотрим модель с полным отсутствием вязкости.

Рассуждения практически те же самые, только теперь нас интересует не масса, а полный импульс жидкости в том же самом объёме V. Он равен:

При тех же самых условиях, что и выше, импульс в объёме может меняться за счёт:

  • конвективного переноса — т.е. импульс «утекает» вместе со скоростью через границу
  • давления окружающих элементов жидкости
  • просто за счёт внешних сил, например — от силы тяжести.

Соответствующие интегралы (порядок отвечает списку) дают такое соотношение:

Начнём их преобразовывать. Правда, для этого нужно воспользоваться тензорным анализом и правилами работы с индексами. Конкретнее, к первому и второму интегралам применяется теорема Гаусса-Остроградского в обобщённой форме (она работает не только для векторных полей). И если перейти к дифференциальной форме уравнения, то получится следующее:

Крестик в кружочке обозначает тензорное произведение, в данном случае — векторов.

В принципе, это уже уравнение Эйлера, однако его можно чуток упростить — ведь закон сохранения массы никто не отменял. Раскрыв здесь скобки в дифференциальных операторах и приведя затем подобные слагаемые, мы увидим, что три слагаемых благополучно собираются в уравнение неразрывности, и потому дают в сумме ноль. Итоговое уравнение оказывается таким:

Если перейти в систему отсчёта, связанную с движущейся жидкостью (не будем заострять внимание на том, как это делается), мы увидим, что уравнение Эйлера выражает второй закон Ньютона для единицы объёма среды.

Учёт вязкости. Уравнение Навье-Стокса

Идеальная жидкость, это, конечно, хорошо (правда, всё равно точно не решается), но во многих случаях учёт вязкости необходим. Даже в той же конвекции, в течении жидкости по трубам. Без вязкости вода вытекала бы из наших кранов с космическими скоростями, а малейшая неоднородность температуры в воде приводила бы к её крайне быстрому и бурному перемешиванию. Потому давайте учтём сопротивление жидкости самой себе.

Дополнить уравнение Эйлера можно различными (но эквивалентными, конечно же) путями. Воспользуемся базовой техникой тензорного анализа — индексной формой записи уравнения. И пока также отбросим внешние силы, чтобы не путались под руками / под ногами / перед глазами (нужное подчеркнуть). При таком раскладе всё, кроме производной по времени, можно собрать в виде дивергенции одного такого тензора:

По смыслу, это плотность потока импульса в жидкости. К нему и нужно добавить вязкие силы в виде ещё одного тензорного слагаемого. Поскольку они явно приводят к потере энергии (и импульса), то они должны вычитаться:

Идя обратно в уравнение с таким тензором, мы получим обобщённое уравнение движения вязкой жидкости:

Оно допускает любой закон для вязкости.

Принято считать очевидным, что сопротивление зависит от скорости движения. Вязкость же, как перенос импульса между участками жидкости с различными скоростями, зависит от градиента скорости (но не от самой скорости — тому мешает принцип относительности). Если ограничиться разложением этой зависимости до линейных слагаемых, получится вот такой жутковатый объект:

в котором величина перед производной содержит 81 коэффициент. Однако, используя ряд совершенно разумных предположений об однородности и изотропности жидкости, от 81 коэффициента можно перейти всего к двум, и в общем случае для сжимаемой среды, тензор вязких напряжений равен:

где η (эта) — сдвиговая вязкость, а ζ (зета или дзета) — объёмная вязкость. Если же среда ещё и несжимаема, то достаточно одного коэффициента сдвиговой вязкости, т.к. второе слагаемое при этом уходит. Такой закон вязкости

носит название закона Навье, а полученное при его подстановке уравнение движения — это уравнение Навье-Стокса:

Точные решения

Главной проблемой гидродинамики является отсутствие точных решений её уравнений. Как бы с этим ни боролись, но получить действительно всеобщих результатов не удаётся до сих пор, и, напомню, вопрос существования и гладкости решений уравнений Навье-Стокса входит в список Проблем тысячелетия института Клэя.

Однако, несмотря на столь грустные факты, некоторые результаты есть. Здесь будут представлены далеко не все, а лишь самые простые случаи.

Потенциальные течения

Особый интерес представляют течения, в которых жидкость не завихряется. Для такой ситуации можно отказаться от рассмотрения векторного поля скорости, поскольку она выражается через градиент скалярной функции — потенциала. Потенциал же удовлетворяет хорошо изученному уравнению Лапласа, решение которого полностью определяется тем, что задано на границах рассматриваемой области:

Более того, при отсутствии вязкости из уравнения Эйлера можно однозначно выразить и давление, что вовсе замечательно и приводит нас к полному решению задачи. Ах, если бы так было всегда… то гидродинамики, наверное, уже бы и не было как современной и актуальной отрасли.

Дополнительно можно упростить задачу предположением, что течение жидкости двумерно — скажем, всё движется в плоскости (x,y), и ни одна частица не перемещается вдоль оси z. Можно показать, что в таком случае скорость может быть также заменена скалярной функцией (на этот раз — функцией тока):

которая при потенциальном течении удовлетворяет условиям Коши-Лагранжа из теории функций комплексной переменной и воспользоваться соответствующим математическим аппаратом. Полностью совпадающим с аппаратом электростатики. Теория потенциальных течений развита на высоком уровне, и в принципе хорошо описывает большой спектр задач.

Простые течения вязкой жидкости

Решения для вязкой жидкости чаще всего удаётся получить, когда из уравнения Навье-Стокса благодаря свойствам симметрии задачи выпадает нелинейное слагаемое.

Сдвиговое течение Куэтта

Самая элементарная задачка. Канал с неподвижной нижней и подвижной верхней стенкой, которая движется равномерно с некоторой скоростью. На границах жидкость прилипает к ним, так что скорость жидкости равна скорости границы. Этот результат является экспериментальным фактом, и как-то даже авторы первых экспериментов не упоминаются, просто — по совокупности экспериментов.

В такой ситуации от уравнения Навье-Стокса останется уравнение вида v» = 0, и потому профиль скорости в канале окажется линейным:

Данная задача является практически базовой для теории смазки, т.к. позволяет непосредственно определить силу, которую требуется приложить к верхней стенке для её движения с конкретной скоростью.

Течение Пуазейля

Вторая по элементарности — ламинарное течение в канале. Или в трубе. Результат оказывается один — профиль скорости является параболическим:

На основе решения Пуазейля можно определить расход жидкости через сечение канала, но, правда, только при ламинарном течении и гладких стенках. С другой стороны, для турбулентного потока и шероховатых стенок точных решений нет, а есть лишь приближённые эмпирические закономерности.

Стекание слоя жидкости по наклонной плоскости

Тут — почти как в задаче Пуазейля, только верхняя граница жидкости будет свободной. Если предположить, что по ней не бегут никакие волны, и вообще сверху нет трения, то профиль скорости будет практически нижней половинкой предыдущего рисунка. Правда, если из полученной зависимости вычислить скорость течения для средней равнинной речки, она составит около 10 км/с, и вода должна самопроизвольно отправляться в космос. Наблюдаемые в природе низкие скорости течения связаны с развитой завихренностью и турбулентностью потока, которые эффективно увеличивают вязкость воды примерно в 1 млн. раз.

В следующем посте планируется рассказать о законе сохранения энергии и соответствующих ему уравнениях переноса тепла при течении жидкости.

Закон сохранения массы уравнение расхода

5-я лекция, 2010 год.

5. КИНЕМАТИКА И ДИНАМИКА ЖИДКОСТИ

5.1. Основные понятия

5.2. Расход. Уравнение расхода

5.3. Уравнение Бернулли для элементарной струйки идеальной жидкости.

Три вида уравнения Бернулли для струйки идеальной жидкости.

5.1. Основные понятия

Кинематика жидкости существенно отличается от кинематики твердого тела. Если отдельные частицы абсолютно твердого тела жестко связаны между собой, то в движущейся жидкой среде такие связи отсутствуют; жидкость состоит из множества частиц движущихся одна относительно другой.

Скорость в данной точке пространства, занятого движущейся жидкостью, является функцией координат этой точки, а иногда и времени.

Задачей кинематики жидкости является определение скорости в любой точке жидкой среды, т. е. нахождение поля скоростей.

Мы сейчас рассмотрим движение идеальной жидкости, то есть жидкости, которая не обладает вязкостью.

В идеальной жидкости, так же как и в неподвижной реальной жидкости, возможен лишь один вид напряжений — нормальные напряжения сжатия, т. е. гидромеханическое давление.

Давление в движущейся идеальной жидкости обладает теми же свойствами, что и в неподвижной жидкости, на внешней поверхности жидкости оно направлено по нормали, а в любой точке внутри жидкости по всем направлениям одинаково.

Течение жидкости может быть установившимся или неустановившимся.

Установившимся называется течение жидкости, при котором давление и скорость являются функциями координат и не зависят от времени.

Давление и скорость могут измениться при перемещении частицы жидкости из одного положения в другое, но в данной неподвижной относительно русла точке давление и скорость при установившемся движении не изменяются во времени.

Последнее положение доказывается подобно тому, как это делалось для неподвижной жидкости (см. п. 1.4): составляются уравнения движения элементарного тетраэдра с учетом сил Д’Аламбера, которые затем вместе с массовыми силами стремятся к нулю при стягивании тетраэдра в точку.

р= f (х, у, z ); v = f 2(х, у, z ); ,

где индексы у скорости означают ее проекции на соответствующие оси, жестко связанные с руслом.

В частном случае установившееся течение может быть равномерным, когда скорость каждой частицы не изменяется с изменением ее координат и поле скоростей остается неизменным вдоль потока .

Примером установившегося течения может служить истечение жидкости из со суда, в котором поддерживается постоянный уровень, или движение жидкости в трубопроводе, создаваемое центробежным насосом с постоянной частотой вращения вала.

Неустановившимся называется течение жидкости, характеристики которого изменяются во времени в точках рассматриваемого пространства.

В общем случае при неустановившемся течении давление и скорость зависят как от координат, так и от времени:

Примерами неустановившегося течения жидкости могут служить быстрое опорожнение сосуда через отверстие в дне или движение во всасывающей или напорной трубе поршневого насоса, поршень которого совершает возвратно-поступательное движение.

Исследование установившихся течений гораздо проще, чем неустановившихся.

При установившемся течении траектории частиц жидкости являются неизменными по времени. При неустановившемся течении траектории различных частиц, проходящих через данную точку пространства, могут иметь разную форму. Поэтому для рассмотрения картины течения, возникающей в каждый данный момент времени, вводится понятие линии тока.

Линией тока называется кривая, в каждой точке которой вектор скорости в данный момент времени направлен по касательной к этой кривой (рис. 5.1).

Очевидно, что в условиях установившегося течения линия тока совпадает с траекторией частицы и не изменяет своей формы с течением времени.

Трубкой тока называется бесконечно малый замкнутый контур, выделенный в данный момент времени в движущейся жидкости, через все точки которого проведены линии тока. Это условная трубчатая поверхность.

Элементарной струйкой называется часть потока, заключенная внутри трубки тока (рис.5.2).

В любой точке «трубки тока» т.е. на трубчатой поверхности струйки, векторы скорости направлены по касательной, а нормальные к этой поверхности составляющие скорости отсутствуют, следовательно, при установившемся движении ни одна частица жидкости, ни в одной точке трубки тока не может проникнуть внутрь струйки или выйти наружу.

Трубка тока, таким образом, является как бы непроницаемой стенкой, а элементарная струйка представляет собой самостоятельный элементарный поток.

Потоки конечных размеров будем сначала рассматривать, как совокупность элементарных струек, т. е. будем предполагать течение струйным. Из-за различия скоростей соседние струйки будут скользить одна по другой, но не будут перемешиваться одна с другой.

Живым сечением или сечением потока, называется площадь поверхности в пределах потока или струйки, проведенная нормально к линиям тока. Далее будем рассматривать в потоках такие участки, в которых струйки можно считать параллельными и, следовательно, живые сечения плоскими.

Различают напорные и безнапорные течения жидкости. Напорными называют течения в закрытых руслах без свободной поверхности, а безанапорными течения со свободной поверхностью. При напорных течениях давление вдоль потока обычно переменное, при безнапорном на свободной поверхности постоянное и чаще всего атмосферное. Примерами напорного течения могут служить течения в трубопроводах с повышенным (или пониженным) давлением, в гидромашинах или других гидроагрегатах. Безнапорными являются течения в реках, открытых каналах и лотках.

5.2. Расход. Уравнение расхода

Расходом называется количество жидкости, протекающее через живое сечение потока в единицу времени. Это количество можно измерить в единицах объема, в весовых единицах, в единицах массы в связи, с чем различают объемный Q , весовой QG и м ассовый расходы Qm .

Для элементарной струйки, имеющей бесконечно малые площади сечений, можно считать истинную скорость одинаковой во всех точках каждого сечения. Следовательно, для этой струйки расходы равны.

объемный, (м 3 /с) dQ = v * dS , (5.136)

весовой, (Н/с) d QG = ρg * dQ , (5.2)

массовый, (кг/с) dQm = ρv * dS , (5.3)

где dS – площадь сечения струйки.

Для потока конечных размеров в общем случае скорость имеет различное значение в разных точках сечения, поэтому расход надо определять, как сумму элементарных расходов струек в данном сечении.

Q = . (5.4)

Обычно в рассмотрение вводят среднюю по сечению скорость v ср = Q / S , откуда средний расход для струйки или потока равен

Условие неразрывности потока основывается на следующих свойствах, законе и предпосылках.

а) трубка тока имеет свойство непроницаемости для внешних, обтекающих ее потоков;

б) закон сохранения вещества;

в) предположение о сплошности (неразрывности) среды для установившегося течения несжимаемой жидкости.

На основании этих предпосылок и свойств можно утверждать, что объемный расход во всех сечениях элементарной струйки (см. рис.5.2) один и тот же

dQ = v 1 * dS 1 = v 2 * dS 2 → const (вдоль струйки). (5.6)
Это уравнение называется уравнением объемного расхода для элементарной струйки.

Аналогичное уравнение можно составить и для потока конечных размеров, ограниченного непроницаемыми стенками, только вместо истинных скоростей следует ввести средние скорости. В результате

Из последнего уравнения следует, что средние скорости в потоке несжимаемой жидкости обратно пропорциональны площадям сечений:

У равнение расхода (5.6‘) является следствием общего закона сохранения вещества для частных условий, в частности? для условий сплошности (неразрывности) течения.

5.3. Уравнение Бернулли для элементарной струйки

Рассмотрим установившееся течение идеальной жидкости находящейся под действием одной массовой силы — силы тяжести, и выведем для этого случая основное уравнение, связывающее между собой давление в жидкости и скорость ее движения.

Возьмем одну из элементарных струек, составляющих поток, выделим сечениями 1 и 2 участок этой струйки произвольной длины (рис.5.3). Пусть площадь первого сечения равна dS 1 , скорость в нем V 1 , давление P 1 , а высота от произвольной плоскости сравнения Z 1 . Во втором сечении dS 2 , V 2 , P 2 и Z 2 .

За бесконечно малый отрезок времени dt выделенный участок струйки переместится в положение 1’ – 2’ .

Применим к массе жидкости в объеме участка струйки теорему о кинетической энергии: работа сил, приложенных к телу, равна приращению кинетической энергии этого тела.

На жидкость действуют силы тяжести и силы давления, нормально к поверхности сечения рассматриваемого участка струйки.

Подсчитаем работу сил давления, сил тяжести и изменение кинетической энергии участка струйки за время dt . Эта теорема выглядит следующим образом.

( m )/2 — ( m )/2 = G * h = G * (Z1-Z2)

Работа силы давления в первом сечении положительна, так как направление силы совпадает с направлением перемещения, и выражается как произведение силы p 1* dS на путь V 1 dt :

Работа силы давления во втором сечении имеет знак минус, так как направление силы прямо противоположно направлению перемещения, и определяется выражением

Силы давления, действующие по боковой поверхности отрезка струйки, работы не производят, так как они нормальны к этой поверхности и к перемещениям.

Работа сил давления равна

Работа силы тяжести равна изменению потенциальной энергии положения участка струйки, поэтому надо из потенциальной энергии жидкости в объеме 1 — 2 вычесть потенциальную энергию жидкости в объеме 1’- 2’ . При этом энергия промежуточного объема 1’- 2 сократится, и останется лишь разность энергии элементов 1- 1’ , 2- 2’ .

ПО уравнению расходов (закон сплошности среды) ( 5.6’ ) объемы и силы тяжести заштрихованных элементов 1 -1’ и 2 — 2’ равны между собой:

Тогда работа силы тяжести выразится как произведение разности высот на силу тяжести dG :

Чтобы подсчитать приращение кинетической энергии рассматриваемого участка струйки за время dt , необходимо из кинетической энергии объема 1’- 2’ вычесть кинетическую энергию объема 1 — 2. При вычитании кинетическая энергия промежуточного объема 1’ — 2 сократится, и останется лишь разность кинетических энергий элементов 2 — 2’ и 1 — 1’ , масса каждого из которых равна dG / g .

Таким образом, приращение кинетической энергии на участке струйки равно

Сложив работу сил давления (см. уравнение 5.7) с работой силы тяжести (5.9) и приравняв эту сумму приращению кинетической энергии (5.10), получим исходное уравнение для трех видов уравнения Бернулли.

Разделим это уравнение на dG (изменение силы тяжести элементарной струйки за время dt ) (см. формулу (5.8) , и произведя сокращения на

Сгруппируем члены, относящиеся к первому сечению, в левой части уравнения, а члены, относящиеся ко второму сечению, в правой:

( 5 . 12 )

где z — геометрическая высота, или геометрический напор;

Р/ρ g – пьезометрическая высота или пьезометрический напор;

v 2 /2 g — скоростная высота или скоростной напор.

Полученное уравнение называется уравнением Бернулли для элементарной струйки идеальной несжимаемой жидкости. Оно было выведено Даниилом Бернулли в 1738 г .

Это уравнение является первой формой уравнения Бернулли, оно

( 5 . 13 )

называется полным напором и имеет размерность длины.

Данное уравнение получено путем деления исходного уравнения (5.11), выражающего теорему об изменении кинетической энергии элементарной струйки, на ее изменении ее силы тяжести за время dt .

Уравнение Бернулли (5.13) записано для двух произвольно взятых сечении струйки и выражает равенство полных напоров Н в этих сечениях. Так как сечения взяты произвольно, следовательно, и для любого другого сечения этой же струйки полный напор будет иметь то же значение

(вдоль струйки)

Для идеальной движущейся жидкости вдоль струйки тока сумма трех напоров: геометрического, пьезометрического и скоростного есть величина постоянная.

На рис. 5.4 показано изменение всех напоров вдоль струйки.

Линия изменения уровней жидкости в пьезометрах называется пьезометрической линией.

Из уравнения Бернулли и уравнения расхода следует, что если площадь поперечного сечения струйки уменьшается, т. е. струйка сужается, то скорость течения жидкости увеличивается, а давление уменьшается, и наоборот, если струйка расширяется, то скорость уменьшается, а давление возрастает.

На рис. 5.4 площадь поперечного сечения струйки от сечения 1 — 1 к сечению 2 — 2 уменьшается в 4 раза, скоростной напор увеличивается в 16 раз, а сечение 3 — 3 имеет ту же площадь, что и сечение 1-1.

Штриховой линией показано положение пьезометрической линия при тех же сечениях и при увеличении расхода в раз, вследствие чего скоростные высоты увеличиваются в 2 раза, а в узкой части струйки давление становятся меньше атмосферного.

Уравнение Бернулли можно записать в двух других формах. Разделив уравнение (5.11) на расход dQ = dS 1* v 1 dt = dS 2* v 2 dt , учитывая, что dG = ρ *g*dQ, а dQ = dG / ρ g, получим

, (5.15)

где все величины выражены в виде давлений.

В этой форме члены уравнения Бернулли имеют размерность давления и имеют следующие называния: ρ zg — весовое давление; р — гидромеханическое давление; ρ v 2 /2 — динамическое давление.

Разделив уравнение (5.11) на массу dm элементарного объема, равную ( ρ * v 1* dS 1) * dt = ( ρ * v 2* dS 2) * dt и преобразуем это уравнение подобно предыдущему. Тогда вместо выражения (5.15) будем иметь

(5.16)

Введем понятие удельной энергии жидкости, в качестве которой рассмотрим отношение энергии к массе или объему.

Нетрудно показать, что члены уравнения (5.16) представляют собой различные формами удельной механической энергии, а именно:

gz — удельная потенциальная энергия (ее еще называют энергией положения), так как частица жидкости массой Δ m , находясь на высоте z , обладает энергией равной Δ mgz , а на единицу массы приходится энергия g Δ mz /Δ m = gz ;

р/ρ — удельная энергия давления (движущейся) жидкости, так как частица массой Δ m при давлении р обладает способностью подняться на высоту h = р/ρ g и приобрести, таким образом, энергию положения Δ mg р/(ρ g ) = р/ρ (после деления на Δ m получаем р/ρ);

сумма gz + р/ρ – удельная потенциальная энергия жидкости;

v 2 /2 — удельная кинетическая энергия жидкости, так как для той же частицы Δ m кинетическая энергия отнесенная к ее массе Δ m v 2 /2 : Δ m = v 2 /2;

Hg = zg + p /ρ+ v 2 /2 – полная удельная механическая энергия движущейся жидкости.

Таким образом, энергетический смысл уравнения Бернулли для элементарной струйки идеальной жидкости заключается в постоянстве вдоль струйки полной удельной энергии жидкости.

Механическая энергия жидкости может иметь три формы: потенциальная энергия, энергия давленияи и кинетическая энергия.

Первая и третья формы механической энергии известны из механики, они свойственны твердым и жидким телам.

Энергия давления является специфической для движущихся жидкостей. В процессе движения идеальной жидкости одна форма энергии может превращаться в другую, однако полная удельная энергия идеальной жидкости при этом как следует из уравнения Бернулли, остается без изменений.

Энергию давления легко преобразовать в механическую работу. Простейшим устройством, с помощью которого осуществляют такое преобразование, является цилиндр с поршнем (рис. 5.5). Покажем, что при этом преобразовании каждая единица массы жидкости совершает работу, численно равную р/ρ.

Пусть площадь поршня равна s , его ход L , избыточное давление жидкости в левой полости цилиндра необходимое для преодоления силы F равно Р = F / S , избыточное давление по другую сторону поршня равно нулю. Преодолевая силу F при перемещении поршня из левого положения, давление совершает работу А = Р SL . Расход жидкости, которую необходимо подвести к цилиндру для совершения этой работы за время t , равен объему цилиндра, т. е. Q t = W = SL .Удельная работа, приходящаяся на 1 кг массы,


источники:

http://habr.com/ru/post/171327/

http://nex7.narod.ru/gidra/5.htm