Закончить уравнение реакции радиоактивного распада

—>Решение задач по химии —>

Глинка Н. Л. Задачи и упражнения по общей химии. Учебное пособие для вузов / Под ред. В. А. Рабиновича и Х. М. Рубиной. – 23-е изд., исправленное – Л.: Химия, 1985. – 264 с., ил.

Задачи 206-227

206. Символ одного из изотопов элемента 52 24Э. Указать: а) название элемента; б) число протонов и нейтронов в ядре; в) число электронов в электронной оболочке атома. Решение

207. Ядро атома некоторого элемента содержит 16 нейтронов, а электронная оболочка этого атома – 15 электронов. Назвать элемент, изотопом которого является данный атом. Привести запись его символа с указанием заряда ядра и массового числа. Решение

208. Массовое число атома некоторого элемента равно 181, в электронной оболочке атома содержится 73 электрона. Указать число протонов и нейтронов в ядре атома и название элемента. Решение

209. В природных соединениях хлор находится в виде изотопов 35 Cl [75,5% (масс.)] и 37 Cl [24,5% (масс.)]. Вычислить среднюю атомную массу природного хлора. Решение

210. Природный магний состоит из изотопов 24 Mg, 25 Mg, 26 Mg. Вычислить среднюю атомную массу природного магния, если содержание отдельных изотопов в атомных процентах соответственно равно 78,6, 10,1 и 11,3. Решение

211. Природный галлий состоит из изотопов 71 Ga и 69 Ga. В каком количественном соотношении находятся между собой числа атомов этих изотопов, если средняя атомная масса галлия равна 69,72? Решение с ключом

212. Найти массу изотопа 81 Sr (T½=8,5 ч), оставшуюся через 25,5 ч хранения, если первоначальная масса его составляла 200 мг. Решение

213. Вычислить процент атомов изотопа 128 I (T½=25 мин), оставшихся не распавшимися после его хранения в течение 2,5 ч. Решение с ключом

214. Период полураспада β — — радиоактивного изотопа 24 Na равен 14,8 ч. Написать уравнение реакции распада и вычислить, сколько граммов дочернего продукта образуется из 24 г 24 Na за 29,6 ч. Решение с ключом

215. Закончить уравнения реакций радиоактивного распада: а) 238 92U→α; б) 235 92U→α; в) 239 94Pu→α; г) 86 37Rb→β — ; д) 234 90Th→β — ; е) 57 25Mn→β — ; ж) 18 9F→β + ; з) 11 6C→β + ; и) 45 22Ti→β + . В каких случаях дочерний атом является изобаром материнского атома? Решение с ключом

216. Какой тип радиоактивного распада наблюдается при следующих превращениях: а) 226 88Ra→ 222 86Rn; б) 239 93Np→ 239 94Pu; в) 152 62Sm→ 148 60Nd; г) 111 46Pd→ 111 47Ag? Решение с ключом

218. Написать полные уравнения ядерных реакций: а) 70 30Zn[p, n]?; б) 51 23V[α, n]?; в) 56 26Fe[D, ?] 57 27Co; г) ?[α, D] 34 17Cl; д) 55 25Mn[?, α] 52 23V. Решение с ключом

219. Как изменяются массовое число и заряд атома изотопа: а) при последовательном испускании α-частицы и двух β-частиц; б) при поглощении ядром двух протонов и испускании двух нейтронов; в) при поглощении одной α-частицы и выбрасывании двух дейтронов? Решение с ключом

220. Сколько α и β — -частиц должно было потерять ядро 226 Ra для получения дочернего элемента с массовым числом 206, принадлежащего IV группе периодической системы элементов? Назвать этот элемент. Решение с ключом

221. Ядро атома изотопа 238 92U в результате радиоактивного распада превратилось в ядро 226 88Ra. Сколько α- и β — -частиц испустило при этом исходное ядро? Решение с ключом

222. Изотоп 40 K превращается в изотоп 40 Ca. Какой тип радиоактивного распада при этом реализуется: а) α-распад; б) β — -распад; в) β + -распад; г) захват электрона; д) спонтанное деление? Решение

223. Какой тип радиоактивного распада приведет к образованию дочернего ядра, являющегося изобаром по отношению к исходному ядру: а) α-распад; б) β — -распад; в) β + -распад; г) захват электрона; д) ни один из этих процессов? Решение

224. Как изменяется массовое число и заряд атома при испускании одной α-частицы и двух β — -частиц: а) заряд уменьшится на 2, а массовое число – на 4; б) заряд увеличится на 2, а массовое число уменьшится на 4; в) заряд не изменится, а массовое число уменьшится на 4; г) ни заряд, ни массовое число не изменятся? Решение

225. Фотон жесткого γ-излучения выбивает из ядра 26 12Mg протон. При этом образуется: а) ядро-изотоп 26 12Mg; б) ядро-изобар 26 12Mg; в) ядро-изотоп 23 11Na; г) ядро-изобар 23 11Na. Решение

226. К какому радиоактивному семейству относится изотоп 207 Pb: а) 232 Th; б) 237 Np; в) 227 Ac; г) 238 U? Решение

227. Может ли в природе находиться изотоп 222 Rn с T½=3,2 дня а) да; б) нет? Потому что: 1) период полураспада этого изотопа много меньше времени существования Земли; 2) этот изотоп является членом радиоактивного семейства; 3) у радона есть более долгоживущие изотопы. Решение

Химия

ОСНОВЫ ТЕОРЕТИЧЕСКОЙ ХИМИИ

3. Строение атома

Ядро атома и радиоактивные превращения. В настоящее время в ядре атома открыто большое число элементарных частиц. Важнейшими из них являются протоны (символ p ) и нейтроны (символ n ). Обе эти частицы рассматриваются как два различных состояния ядерной частицы нуклона. Элементарные частицы характеризуются определенной массой и зарядом. Протон обладает массой 1,0073 а.е.м. и зарядом +1. Масса нейтрона равна 1,0087 а.е.м., а его заряд — нулю (частица электрически нейтральна). Можно сказать, что массы протона и нейтрона почти одинаковы.

Вскоре после открытия нейтрона , была создана протонно-нейтронная теорию строения ядра. Согласно этой теории ядра всех атомов, кроме ядра атома водорода, состоят из Z протонов (А — Z) нейтронов, где Z — порядковый номер элемента, А — массовое число.

Массовое число А указывает суммарное число протонов Z и нейтронов N в ядре атома, т.е.

Силы, удерживающие протоны и нейтроны в ядре, называются ядерными. Это чрезвычайно большие силы, действующие на очень коротких расстояниях (порядка 10 -15 м) и превосходящие силы отталкивания. Природу этих сил изучает ядерная физика. В ядре сосредоточена почти вся масса атома. Массой электронов по сравнению с массой ядра можно практически пренебречь. Свойства ядра определяются главным образом числом протонов и нейтронов, т.е. составом ядра. Состав ядер атомов различных химических элементов не одинаков, а потому элементы отличаются по атомной массе. И поскольку в состав ядра входят протоны, ядро заряжено положительно. Так как заряд ядра численно равен порядковому номеру элемента Z , то он определяет число электронов в электронной оболочке атома и ее строение, а тем самым и свойства химического элемента. Поэтому положительный заряд ядра, а не атомная масса является главной характеристикой атома, а значит, и элемента.

Наряду с химическими реакциями, в которых принимают участие только электроны, существуют различные превращения, в которых изменению подвергаются ядра атомов (ядерные реакции).

Изотопы. Исследования показали, что в природе существуют атомы одного и того же элемента с разной массой. Так, встречаются атомы хлора с массой 35 и 37. Ядра этих атомов содержат одинаковое число протонов, но разное число нейтронов.

Атомы одного и того же элемента, имеющие разную массу (массовое число), называют изотопами. Каждый изотоп характеризуется двумя величинами: массовым числом (проставляется вверху слева от химического знака) и порядковым номером (проставляется внизу слева от химического знака) и обозначается символом соответствующего элемента. Например, изотоп углерода с массовым числом 12 записывается так: 12 6 С, или 12 С, или словами: “углерод-12”. Эта форма записи распространена и на элементарные частицы: электрон 0 1 е, нейтрон 1 0 n, протон 1 1 p или 1 1 Н, нейтрино 0 0 n . Изотопы известны для всех химических элементов.

Обычно изотопы различных элементов не имеют специальных названий. Единственным исключением является водород, изотопы которого имеют специальные химические символы и названия: 1 H — протий, 2 D — дейтерий, 3 T — тритий. Это связано с тем, что относительное отличие масс изотопов для водорода является максимальным среди всех химических элементов.

Атомная масса элемента равна среднему значению из масс всех его природных изотопов с учетом их распространенности.

Так, например, природный хлор состоит из 75,4% изотопа с массовым числом 35 и из 24,6% изотопа с массовым числом 37; средняя атомная масса хлора 35,453. Средняя атомная масса природного лития, содержащего 92,7% 7 3 Li и 7,3% 6 3 Li равна 6,94 и т.д. Атомные массы элементов, приводимые в периодической системе Д. И. Менделеева, есть средние массовые числа природных смесей изотопов. Это одна из причин, почему они отличаются от целочисленные значений. Наряду с термином “изотопы” используется термин “нуклид”. Нуклид — это атом со строго определенным значением массового числа, т.е. с фиксированным значением числа протонов и нейтронов в ядре. Радиоактивный нуклид сокращенно называют радионуклид. Термин “изотопы” следует применять только для обозначения стабильных и радиоактивных нуклидов одного элемента.

Устойчивые и неустойчивые изотопы. Все изотопы подразделяются на стабильные и радиоактивные. Стабильные изотопы не подвергаются радиоактивному распаду, поэтому они и сохраняются в природных условиях. Примерами стабильных изотопов являются 16 О, 12 С, 19 F. Большинство природных элементов состоит из смеси двух или большего числа стабильных изотопов. Из всех элементов наибольшее число стабильных изотопов имеет олово (10 изотопов). В редких случаях, например у алюминия, в природе встречается только один стабильный изотоп, а остальные изотопы неустойчивы.

Радиоактивные изотопы подразделяются, в свою очередь, на естественные и искусственные — и те и другие самопроизвольно распадаются, испуская при этом a — или b -частипы до тех пор, пока не образуется стабильный изотоп. Химические свойства всех изотопов в основном одинаковы. Эти свойства определяются главным образом зарядом ядра, а не его массой.

С помощью ядерных реакций получают изотопы, обладающие радиоактивностью (радиоактивные изотопы). Все они неустойчивы и в результате радиоактивного распада превращаются в изотопы других элементов.

Радиоактивные изотопы получены для всех химических элементов. Их известно около 1500. Элементы, состоящие только из радиоактивных изотопов, называются радиоактивными. Это элементы с Z = 43, 61 и 84 — 107.

Стабильных (нерадиоактивных) изотопов известно около 300. Из них состоит большинство химических элементов периодической системы элементов Д.И. Менделеева. У некоторых элементов наряду со стабильными имеются и долгоживущие радиоактивные изотопы. Это 40 19 K, 87 37 Rb, 115 49 In и др.

По химическим свойствам радиоактивные изотопы почти не отличаются от стабильных. Поэтому они служат в качестве “меченых” атомов, позволяющих по измерению их радиоактивности следить за поведением всех атомов данного элемента и за их передвижением. Радиоактивные изотопы широко применяются в научных исследованиях, в промышленности, сельском хозяйстве, медицине, биологии и химии. В настоящее время их получают в больших количествах.

Виды радиоактивного распада. Существует три основных вида самопроизвольных ядерных превращений.

1. a — распад. Ядро испускает a — частицу, которая представляет собой ядро атома гелия 4 Не и состоит из двух протонов и двух нейтронов. При a — распаде массовое число изотопа уменьшается на 4, а заряд ядра — на 2 :

2. b -распад. В неустойчивом ядре нейтрон превращается в протон, при этом ядро испускает электрон ( b -частицу) и антинейтрино:

При b -распаде массовое число изотопа не изменяется, поскольку общее число протонов и нейтронов сохраняется, а заряд ядра увеличивается на 1:

3. g -распад. Возбужденное ядро испускает электромагнитное излучение с очень малой длиной волны и очень высокой частотой ( g -излучение), при этом энергия ядра уменьшается, массовое число и заряд ядра остаются неизменными.

Радиоактивные превращения . Ядерные реакции — это превращение атомных ядер в результате их взаимодействия с элементарными частицами и друг с другом. Написание уравнений таких реакций основано на законах сохранения массы и заряда. Это означает, что сумма масс и сумма зарядов в левой части уравнения должна быть равна сумме масс и сумме зарядов в правой части уравнения :

Это уравнение показывает, что при взаимодействии атома алюминия с a -частицей образуются атом кремния и протон.

Более употребительна краткая запись ядерных реакций. Вначале записывают химический знак исходного ядра, затем (в скобках) кратко обозначают частицу, вызвавшую реакцию, и частицу, образовавшуюся в результате реакции, после чего ставят химический знак конечного ядра. При этом у символов исходного и конечного ядер обычно проставляются только массовые числа, так как заряды ядер легко определять по периодической системе элементов Д.И. Менделеева. Сокращенная запись рассмотренных ранее ядерных реакций следующая:

где a — обозначение a -частицы ( 4 2 Не); р — протона ( 1 1 Н); черточка означает отсутствие действующей частицы в случае радиоактивного распада.

Важнейшей особенностью ядерных реакций является выделение огромного количества энергии в форме кинетической энергии образующихся частиц или в форме энергии излучения. В химических реакциях энергия выделяется главным образом в форме теплоты. Энергия ядерных реакций превышает энергию химических реакций в миллионы раз. Этим объясняется неразрушимость ядер атомов при протекании химических реакций.

Скорость радиоактивного распада. Период полураспада. Скорости распада радиоактивных элементов сильно отличаются от одного элемента к другому и не зависят от внешних условий, таких, например, как температура (в этом состоит важное отличие ядерных реакций от обычных химических превращений). Каждый радиоактивный элемент характеризуется периодом полураспада t 1/2 , т. е. временем, за которое самопроизвольно распадается половина атомов исходного вещества. Для разных элементов период полураспада имеет сильно отличающиеся значения. Так, для урана 238 U период полураспада t 1/2 = 4,5 × 10 9 лет. Именно поэтому активность урана в течение нескольких лет заметно не меняется. Для радия 226 Ra период полураспада t 1/2 = 1600 лет, поэтому и активность радия больше, чем урана. Ясно, что чем меньше период полураспада, тем быстрее протекает радиоактивный распад. Для разных элементов период полураспада может изменяться от миллионных долей секунды до миллиардов лет.

На примере естественного распада урана 238 U показаны превращения, которые через промежуточные радиоактивные элементы приводят к устойчивому элементу — свинцу 206 Р b . Схема хорошо иллюстрирует различие в периодах полураспада t 1/2 для различных элементов (периоды полураспада даны внизу под стрелкой, частицы, испускаемые радиоактивными элементами, — над стрелкой).

Уравнение радиоактивного распада. Математическое уравнение, описывающее закон радиоактивного распада, связывает значение массы m(t) радиоактивного изотопа в момент времени t с начальной массой m 0 :

Кроме приведенного на рисунке естественного ряда радиоактивных элементов (так называемого ряда урана), известны еще два других естественных ряда — это ряд актиния, начинающийся с 235 U и заканчивающийся 208 Р b , и ряд тория, начинающийся с 232 Т h и заканчивающийся 208 Р b . Существует еще и четвертый ряд радиоактивных изотопов, этот ряд получен искусственно.

Искусственные превращения , ядерный синтез. Первая искусственная ядерная реакция была осуществлена Резерфордом путем бомбардировки атомов азота a частицами :

В настоящее время, чтобы осуществить искусственные превращения, чаще используют протоны или нейтроны, например:

В ядерных реакциях (в случае естественного или искусственного превращения элементов) сумма атомных масс (сумма индексов слева вверху) реагентов и продуктов всегда одинакова. Это относится и к зарядам ядер (индексы слева внизу, которые часто опускаются).

В 1930 г. был создан первый в мире циклотрон (ускоритель элементарных частиц — “снарядов” для бомбардировки ядер атомов), после чего было открыто и изучено множество разнообразных ядерных реакций. В настоящее время специальная область химии, ядерная химия, занимается изучением превращений элементов.

Особую важность представлял синтез неизвестных ранее элементов: технеция, франция, астата и др., а также всех трансурановых элементов (элементов, порядковый номер которых превышает 92). В настоящее время получено 17 трансурановых элементов (от Z = 93 до Z = 109 включительно). Работы в этой области проводятся в Объединенном институте ядерных исследований в г. Дубне. Там впервые были синтезированы элементы с порядковыми номерами 102, 103, 104, 105, 106, 107. Ведутся работы по синтезу элементов с более тяжелыми ядрами.

Урок физики по теме «Ядерные реакции». 11-й класс

Разделы: Физика

Класс: 11

Задачи урока: ознакомить учащихся с ядерными реакциями, с процессами изменения атомных ядер, превращением одних ядер в другие под действием микрочастиц. Подчеркнуть, что это отнюдь не химические реакции соединения и разъединения атомов элементов между собой, затрагивающие только электронные оболочки, а перестройка ядер как систем нуклонов, превращение одних химических элементов в другие.

Урок сопровождается презентацией в размере 21 слайда (Приложение).

Ход урока

Повторение

1. Каков состав атомных ядер?

ЯДРО (атомное)– это положительно заряженная центральная часть атома, в которой сосредоточено 99,96% его массы. Радиус ядра

10 –15 м, что приблизительно в сто тысяч раз меньше радиуса всего атома, определяемого размерами его электронной оболочки.

Атомное ядро состоит из протонов и нейтронов. Их общее количество в ядре обозначают буквой А и называют массовым числом. Число протонов в ядре Z определяет электрический заряд ядра и совпадает с атомным номером элемента в периодической системе элементов Д.И. Менделеева. Число нейтронов в ядре может быть определено как разность между массовым числом ядра и числом протонов в нем. Массовое число – это число нуклонов в ядре.

2. Как объяснить стабильность атомных ядер?

ЯДЕРНЫЕ СИЛЫ – это мера взаимодействия нуклонов в атомном ядре. Именно эти силы удерживают одноименно заряженные протоны в ядре, не давая им разлететься под действием электрических сил отталкивания.

3. Назовите свойства ядерных сил.

Ядерные силы обладают рядом специфических свойств:

  1. Ядерные силы на 2–3 порядка интенсивнее электромагнитных.
  2. Ядерные силы имеют короткодействующий характер: радиус их действия R

10 –15 м (т.е. совпадает по порядку величины с радиусом атомного ядра).
Ядерные силы являются силами притяжения на расстояниях

10 –15 м, но на существенно меньших расстояниях между нуклонами переходят в силы отталкивания.

4. Что такое энергия связи ядра?

ЭНЕРГИЯ СВЯЗИ АТОМНОГО ЯДРА – это минимальная энергия, которая необходима для полного расщепления ядра на отдельные нуклоны. Разность между суммой масс нуклонов (протонов и нейтронов) и массой состоящего из них ядра, умноженная на квадрат скорости света в вакууме, и есть энергия связи нуклонов в ядре. Энергия связи, приходящаяся на один нуклон, называется удельной энергией связи.

5. Почему масса ядра не равна сумме масс протонов и нейтронов, входящих в него?

При образовании ядра из нуклонов происходит уменьшение энергии ядра, что сопровождается уменьшением массы, т. е. масса ядра должна быть меньше суммы масс отдельных нуклонов, образующих это ядро.

6. Что такое радиоактивность?

Изучение нового материала.

ЯДЕРНАЯ РЕАКЦИЯ – это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры A (a, b) B или А + а → В + b.

Что общего и в чем различие ядерной реакции и радиоактивного распада?

Общим признаком ядерной реакции и радиоактивного распада является превращение одного атомного ядра в другое.

Но радиоактивный распад происходит самопроизвольно, без внешнего воздействия, а ядерная реакция вызывается воздействием бомбардирующей частицы.

Виды ядерных реакций:

  • через стадию образования составного ядра;
  • прямая ядерная реакция (энергия больше 10 МэВ);
  • под действием различных частиц: протонов, нейтронов, …;
  • синтез ядер;
  • деление ядер;
  • с поглощением энергии и с выделением энергии.

Первая ядерная реакция была осуществлена Э. Резерфордом в 1919 году в опытах по обнаружению протонов в продуктах распада ядер. Резерфорд бомбардировал атомы азота α-частицами. При соударении частиц происходила ядерная реакция, протекавшая по следующей схеме:
14 7N + 4 2He → 17 8O + 1 1H

Условия протекания ядерных реакций

Для осуществления ядерной реакции под действием положительно заряженной частицы необходимо, чтобы частица обладала кинетической энергией, достаточной для преодоления действия сил кулоновского отталкивания. Незаряженные частицы, например нейтроны, могут проникать в атомные ядра, обладая сколь угодно малой кинетической энергией. Ядерные реакции могут протекать при бомбардировке атомов быстрыми заряженными частицами (протоны, нейтроны, α-частицы, ионы).

Первая реакция бомбардировки атомов быстрыми заряженными частицами была осуществлена с помощью протонов большой энергии, полученных на ускорителе, в 1932 году:
7 3Li + 1 1H → 4 2He + 4 2He

Однако наиболее интересными для практического использования являются реакции, протекающие при взаимодействии ядер с нейтронами. Так как нейтроны лишены заряда, они беспрепятственно могут проникать в атомные ядра и вызывать их превращения. Выдающийся итальянский физик Э. Ферми первым начал изучать реакции, вызываемые нейтронами. Он обнаружил, что ядерные превращения вызываются не только быстрыми, но и медленными нейтронами, движущимися с тепловыми скоростями.

Для осуществления ядерной реакции под действием положительно заряженной частицы необходимо, чтобы частица обладала кинетической энергией, достаточной для преодоления действия сил кулоновского отталкивания. Незаряженные частицы, например нейтроны, могут проникать в атомные ядра, обладая сколь угодно малой кинетической энергией.

Ускорители заряженных частиц (сообщение ученика)

Чтобы проникнуть в тайны микромира, человек изобрел микроскоп. Со временем выяснилось, что возможности оптических микроскопов весьма ограничены – они не позволяют «заглянуть» с глубь атомов. Для этих целей более подходящими оказались не световые лучи, а пучки заряженных частиц. Так, в знаменитых опытах Э.Резерфорда использовался поток α-частиц, испускаемых радиоактивным препаратами. Однако природные источники частиц (радиоактивные вещества) дают пучки очень малой интенсивности, энергия частиц оказывается относительно невысокой, к тому же эти источники неуправляемы. Поэтому возникла проблема создания искусственных источников ускоренных заряженных частиц. К ним относятся, в частности, электронные микроскопы, в которых используются пучки электронов с энергиями порядка 10 5 эВ.

В начале 30-х годов 20-го столетия появились первые ускорители заряженных частиц. В этих установках заряженные частицы (электроны или протоны), двигаясь в вакууме под действием электрических и магнитных полей, приобретают большой запас энергии (ускоряются). Чем больше энергия частицы, тем меньше ее длина волны, поэтому такие частицы в большей степени подходят для «прощупывания» микрообъектов. В то же время с возрастанием энергии частицы расширяется число вызываемых ею взаимопревращений частиц, приводящих к рождению новых элементарных частиц. Следует иметь в виду, что проникновение в мир атомов и элементарных частиц обходится недешево. Чем выше конечная энергия ускоряемых частиц, тем более сложными и крупными оказываются ускорители; их размеры могут достигать нескольких километров. Существующие ускорители позволяют получать пучки заряженных частиц с энергиями от нескольких МэВ до сотен ГэВ. Интенсивность пучков частиц достигает 10 15 – 10 16 частиц в секунду; при этом пучок может быть сфокусирован на мишени площадью всего нескольких квадратных миллиметров. В качестве ускоряемых частиц чаще всего используются протоны и электроны.

Наиболее мощные и дорогостоящие ускорители строятся с чисто научными целями – чтобы получать и исследовать новые частицы, изучать взаимопревращения частиц. Ускорители относительно невысоких энергий широко применяются в медицине и технике – для лечения онкологических больных, для производства радиоактивных изотопов, для улучшения свойств полимерных материалов и для многих других целей.

Многообразие существующих типов ускорителей можно разбить на четыре группы: ускорители прямого действия, линейные ускорители, циклические ускорители, ускорители на встречных пучках.

Где находятся ускорители? В Дубне (Объединенный институт ядерных исследований) под руководством В.И.Векслера в 1957 году построен синхрофазотрон. В Серпухове – синхрофазотрон, длина его кольцевой вакуумной камеры, находящейся в магнитном поле, составляет 1,5 км; энергия протонов 76 ГэВ. В Новосибирске (институт ядерной физики) под руководством Г.И.Будкера введены в действие ускорители на встречных электрон-электронных и электрон-позитронных пучках (пучки по 700 МэВ и 7 ГэВ). В Европе (ЦЕРН, Швейцария – Франция) работают ускорители со встречными протонными пучками по 30 ГэВ и с протон-антипротонными пучками по 270 ГэВ. В настоящее время в ходе сооружения Большого адронного коллайдера (БАК) на границе Швейцарии и Франции завершен ключевой этап строительных работ – монтаж сверхпроводящих магнитов ускорителя элементарных частиц.

Коллайдер строится в туннеле с периметром 26650 метров на глубине около ста метров. Первые тестовые столкновения в коллайдере планировалось провести в ноябре 2007 года, однако происшедшая в ходе испытательных работ поломка одного из магнитов, приведет к некоторой задержке в графике ввода установки в строй. Большой адронный коллайдер предназначен для поиска и изучения элементарных частиц. После запуска БАК будет самым мощным ускорителем элементарных частиц в мире, почти на порядок превосходя своих ближайших конкурентов. Сооружение научного комплекса Большого адронного коллайдера ведется более 15 лет. В этой работе участвуют более 10 тысяч человек из 500 научных центров всего мира.

Ядерные реакции сопровождаются энергетическими превращениями. Энергетическим выходом ядерной реакции называется величина:
Q = (MA + MBMCMD)c 2 = ΔMc 2 , где MA и MB – массы исходных продуктов, MC и MD – массы конечных продуктов реакции. Величина ΔM называется дефектом масс. Ядерные реакции могут протекать с выделением (Q > 0) или с поглощением энергии (Q -12 с.

Законы сохранения при ядерных реакциях

При ядерных реакциях выполняется несколько законов сохранения: импульса, энергии, момента импульса, заряда. В дополнение к этим классическим законам при ядерных реакциях выполняется закон сохранения так называемого барионного заряда (т.е. числа нуклонов – протонов и нейтронов). Выполняется также ряд других законов сохранения, специфических для ядерной физики и физики элементарных частиц.

  1. Что такое ядерная реакция?
  2. В чем отличие ядерной реакции от химической?
  3. Почему образовавшиеся ядра гелия разлетаются в противоположные стороны?
    7 3Li + 1 1H → 4 2He + 4 2He
  4. Является ли ядерной реакция испускания α –частицы ядром?
  5. Допишите ядерные реакции:
    • 9 4Be + 1 1H → 10 5B + ?
    • 14 7N + ? → 14 6C + 1 1p
    • 14 7N + 4 2He → ? + 1 1H
    • 27 13Al + 4 2He → 30 15P + ? (1934 г. Ирен Кюри и Фредерик Жолио-Кюри получили радиоактивный изотоп фосфора)
    • ? + 4 2He → 30 14Si + 1 1p
  6. Определите энергетический выход ядерной реакции.
    14 7N + 4 2He → 17 8O + 1 1H
    Масса атома азота 14,003074 а.е.м., атома кислорода 16,999133а.е.м., атома гелия 4,002603 а.е.м., атома водорода 1,007825 а.е.м.

Самостоятельная работа

Вариант 1

1. Напишите уравнения следующих ядерных реакций:

  1. алюминий ( 27 13Al) захватывает нейтрон и испускает α-частицу;
  2. азот ( 14 7N) бомбардируется α-частицами и испускает протон.

2. Закончите уравнение ядерных реакций:

3. Определите энергетический выход реакций:

Вариант 2

1. Напишите уравнения следующих ядерных реакций:

  1. фосфор( 31 15Р) захватывает нейтрон и испускает протон;
  2. алюминий ( 27 13Al) бомбардируется протонами и испускает α-частицу.

2. Закончите уравнение ядерных реакций:

3. Определите энергетический выход реакций:

После выполнения самостоятельной работы проводится самопроверка.

Домашнее задание: № 1235 – 1238. (А.П.Рымкевич)


источники:

http://bobych.ru/lection/himiya/uch_chem_osnteorhim03.html

http://urok.1sept.ru/articles/525067