Замена нелинейного дифференциального уравнения линейным называется

Разница между линейными и нелинейными дифференциальными уравнениями

Разница между линейными и нелинейными дифференциальными уравнениями — Наука

Содержание:

Линейные и нелинейные дифференциальные уравнения

Уравнение, содержащее хотя бы один дифференциальный коэффициент или производную неизвестной переменной, называется дифференциальным уравнением. Дифференциальное уравнение может быть линейным или нелинейным. Задача этой статьи — объяснить, что такое линейное дифференциальное уравнение, что такое нелинейное дифференциальное уравнение и в чем разница между линейными и нелинейными дифференциальными уравнениями.

С момента развития исчисления в 18 веке математиками, такими как Ньютон и Лейбниц, дифференциальное уравнение сыграло важную роль в истории математики. Дифференциальные уравнения имеют большое значение в математике из-за их диапазона приложений. Дифференциальные уравнения лежат в основе каждой модели, которую мы разрабатываем для объяснения любого сценария или события в мире, будь то физика, инженерия, химия, статистика, финансовый анализ или биология (список бесконечен). Фактически, до тех пор, пока исчисление не стало устоявшейся теорией, надлежащие математические инструменты были недоступны для анализа интересных проблем природы.

Уравнения, получаемые в результате конкретного применения математического анализа, могут быть очень сложными и иногда неразрешимыми. Однако есть проблемы, которые мы можем решить, но они могут выглядеть одинаково и сбивать с толку. Поэтому для упрощения идентификации дифференциальные уравнения классифицируются по их математическому поведению. Линейный и нелинейный — одна из таких категорий. Важно определить разницу между линейными и нелинейными дифференциальными уравнениями.

Что такое линейное дифференциальное уравнение?

Предположим, что f: X → Y и f (x) = y, а дифференциальное уравнение без нелинейных членов неизвестной функции y и его производные известны как линейное дифференциальное уравнение.

Это налагает условие, что y не может иметь более высокие индексные члены, такие как y 2 , y 3 ,… И кратные производные финансовые инструменты, такие как

Он также не может содержать нелинейные термины, такие как Sin y, е y^-2 , или ln y. Это принимает форму,

где y и грамм являются функциями Икс. Уравнение представляет собой дифференциальное уравнение порядка п, который является индексом производной высшего порядка.

В линейном дифференциальном уравнении дифференциальный оператор является линейным оператором, а решения образуют векторное пространство. В результате линейного характера набора решений линейная комбинация решений также является решением дифференциального уравнения. То есть, если y1 и y2 являются решениями дифференциального уравнения, то C1 y1+ C2 y2 тоже решение.

Линейность уравнения — это только один параметр классификации, и его можно в дальнейшем разделить на однородные или неоднородные, а также обыкновенные или дифференциальные уравнения в частных производных. Если функция грамм= 0, то уравнение является линейным однородным дифференциальным уравнением. Если ж является функцией двух или более независимых переменных (е: X, T → Y) и f (x, t) = y , то уравнение является линейным уравнением в частных производных.

Метод решения дифференциального уравнения зависит от типа и коэффициентов дифференциального уравнения. Самый простой случай возникает, когда коэффициенты постоянны. Классическим примером для этого случая является второй закон движения Ньютона и его различные приложения. Второй закон Ньютона дает линейное дифференциальное уравнение второго порядка с постоянными коэффициентами.

Что такое нелинейное дифференциальное уравнение?

Уравнения, содержащие нелинейные члены, известны как нелинейные дифференциальные уравнения.

Все это нелинейные дифференциальные уравнения. Нелинейные дифференциальные уравнения сложно решить, поэтому для получения правильного решения требуется тщательное изучение. В случае уравнений с частными производными большинство уравнений не имеют общего решения. Следовательно, каждое уравнение следует рассматривать независимо.

Уравнение Навье-Стокса и уравнение Эйлера в гидродинамике, полевые уравнения Эйнштейна общей теории относительности являются хорошо известными нелинейными уравнениями в частных производных. Иногда применение уравнения Лагранжа к системе переменных может привести к системе нелинейных уравнений в частных производных.

В чем разница между линейными и нелинейными дифференциальными уравнениями?

• Дифференциальное уравнение, которое имеет только линейные члены неизвестной или зависимой переменной и ее производных, известно как линейное дифференциальное уравнение. Он не имеет члена с зависимой переменной индекса больше 1 и не содержит кратных его производных. Он не может иметь нелинейных функций, таких как тригонометрические функции, экспоненциальные функции и логарифмические функции по отношению к зависимой переменной. Любое дифференциальное уравнение, содержащее вышеупомянутые члены, является нелинейным дифференциальным уравнением.

• Решения линейных дифференциальных уравнений создают векторное пространство, и дифференциальный оператор также является линейным оператором в векторном пространстве.

• Решения линейных дифференциальных уравнений относительно проще, и существуют общие решения. Для нелинейных уравнений в большинстве случаев общего решения не существует, и решение может быть специфическим для конкретной задачи. Это делает решение намного более сложным, чем решение линейных уравнений.

Замена нелинейного дифференциального уравнения линейным называется

Название работы: Приведите методику линеаризации нелинейных дифференциальных уравнений

Предметная область: Коммуникация, связь, радиоэлектроника и цифровые приборы

Описание: Если динамика элемента описывается линейным дифференциальным уравнением то этот элемент называется линейным если дифференциальное уравнение нелинейно то элемент называется нелинейным. Обычно линеаризация нелинейного уравнения производится относительно некоторого установившегося состояния элемента системы. Если дифференциальное уравнение элемента нелинейно изза нелинейности его статической характеристики то линеаризация уравнения сводится к замене нелинейной характеристики элемента x=фg некоторой линейной функцией x=gb. Аналитически эта.

Дата добавления: 2013-09-21

Размер файла: 13.05 KB

Работу скачали: 20 чел.

  1. Приведите методику линеаризации нелинейных дифференциальных уравнений.

Если динамика элемента описывается линейным дифференциальным уравнением, то этот элемент называется линейным, если дифференциальное уравнение нелинейно, то элемент называется нелинейным. Из-за нелинейности статических характеристик уравнения элементов системы в большинстве случаев являются нелинейными.

Для упрощения анализа, когда это возможно, приближенно заменяют нелинейные дифференциальные уравнения такими линейными уравнениями, решения которых с достаточной степенью точности совпадают с решениями нелинейных уравнений. Этот процесс замены нелинейного дифференциального уравнения линейным называется линеаризацией. Обычно линеаризация нелинейного уравнения производится относительно некоторого установившегося состояния элемента системы.

Если дифференциальное уравнение элемента нелинейно из-за нелинейности его статической характеристики, то линеаризация уравнения сводится к замене нелинейной характеристики элемента x=ф(g) некоторой линейной функцией x=ag+b. Аналитически эта замена производится с помощью разложения в ряд Тейлора функции x=y(g) в окрестности точки, соответствующей установившемуся состоянию и отбрасывания всех членов, содержащих отклонение g входной величины элемента в степени выше первой. Геометрически это означает замену кривой x=ф(g) касательной, проведенной к кривой в точке (х0, g0), соответствующей установившемуся состоянию работы элемента.

В других случаях линеаризация производится путем проведения секущей, мало отклоняющейся от функции x=ф(g) в требуемом диапазоне измене-ния входной величины элемента.

Составление и линеаризация дифференциальных уравнений элементов системы

В установившемся состоянии зависимость выходной величины элемента системы от входной задается статической характеристикой элемента. Как правило, статические характеристики элементов нелинейны. Статические характеристики могут быть получены из дифференциальных уравнений элементов системы.

Пусть дифференциальное уравнение, описывающее поведение элемента, имеет вид

(1)

Тогда статическая характеристика этого элемента задается уравнением в неявной форме

(2)

то есть для ее получения в уравнении (1) следует положить x=const и g=const.

Если динамика элемента описывается линейным дифференциальным уравнением, то этот элемент называется линейным, если дифференциальное уравнение нелинейно, то элемент называется нелинейным. Из-за нелинейности статических характеристик уравнения элементов системы в большинстве случаев являются нелинейными.

Для упрощения анализа, когда это возможно, приближенно заменяют нелинейные дифференциальные уравнения такими линейными уравнениями, решения которых с достаточной степенью точности совпадают с решениями нелинейных уравнений. Этот процесс замены нелинейного дифференциального уравнения линейным называется линеаризацией. Обычно линеаризация нелинейного уравнения производится относительно некоторого установившегося состояния элемента системы.

Если дифференциальное уравнение элемента нелинейно из-за нелинейности его статической характеристики, то линеаризация уравнения сводится к замене нелинейной характеристики элемента x=ф(g) некоторой линейной функцией x=ag+b. Аналитически эта замена производится с помощью разложения в ряд Тейлора функции x=y(g) в окрестности точки, соответствующей установившемуся состоянию и отбрасывания всех членов, содержащих отклонение Dg входной величины элемента в степени выше первой. Геометрически это означает замену кривой x=ф(g) касательной, проведенной к кривой в точке (х0, g0), соответствующей установившемуся состоянию работы элемента (рис. 3).

В других случаях линеаризация производится путем проведения секущей, мало отклоняющейся от функции x=ф(g) в требуемом диапазоне измене­ния входной величины элемента.

Назовем нелинейные статические характеристики, линеаризуемые в требуе­мом диапазоне изменения входной величины указанным выше способом, не­существенно нелинейными характеристиками. Наряду с линеаризуемыми характеристиками имеются такие характеристики, которые не поддаются такой линеаризации. К ним относятся, например, характеристики, не разлагаемые в ряд Тейлора в окрестности точки установившегося состояния. Такие характеристики будем называть существенно нелинейными.

Рассмотрим подробнее процесс линеаризации нелинейного уравнения элемента с помощью ряда Тейлора. Пусть поведение элемента описывается нелинейным дифференциальным уравнением (1). Тогда установившееся состояние элемента характеризуется уравнением (2). Пусть g0 и х0 — значения установившегося состояния. Тогда координаты g и х можно записать в виде х=х0+Dx, g=g0+Dg, где Dg и Dx — отклонения координат g и x от установившегося состояния. Уравнение (1) в отклонениях имеет вид

Разложим левую часть этого уравнения в ряд Тейлора относительно точки (0, 0, х0, g0):

В левой части этого равенства не выписаны члены, содержащие отклонения Dg и Dx и их производные в степени выше первой. Частные производные в левой части этого уравнения представляют собой некоторые числа, величины которых зависят от вида функ­ции F(x», x’, x, g) и значений координат g0 и х0.

Считая отклонения Dg, Dх от установившегося состояния, а также их производные по времени малыми и полагая, что функция F(x», x’, x, g) достаточно гладкая по всем аргументам в окрестности точки, соответствующей установившемуся состоянию, отбросим в этом уравнении все члены, которые содержат отклонения Dg и Dх, а также их производные в степени выше первой. Полученное уравнение

является линейным дифференциальным уравнением с постоянными коэффициентами

Очевидно, что необходимым условием линеаризации является возможность разложения в ряд Тейлора функции F(x», x’, x, g) в окрестности точки, соответствующей установившемуся состоянию. Линеаризованное уравнение приближенно заменяет нелинейное уравнение (1) лишь в некоторой малой окрестности точки (0, 0, х0, g0). Величина этой окрестности зависит от гладкости функции F(x», x’, x, g) в этой точке, т. е. от величин производных порядка выше первого этой функции в точке (0, 0, х0, g0). Как правило, с помощью линеаризованного уравнения можно исследовать поведение элемента системы лишь при малых отклонениях входной и выходной координаты от установившегося состояния. Очевидно, что необходимым условием линеаризации является возможность разложения в ряд Тейлора функции F(x», x’, x, g) в окрестности точки, соответствующей установившемуся состоянию. Линеаризованное уравнение приближенно заменяет нелинейное уравнение (1) лишь в некоторой малой окрестности точки (0, 0, х0, g0). Величина этой окрестности зависит от гладкости функции F(x», x’, x, g) в этой точке, т. е. от величин производных порядка выше первого этой функции в точке (0, 0, х0, g0). Как правило, с помощью линеаризованного уравнения можно исследовать поведение элемента системы лишь при малых отклонениях входной и выходной координаты от установившегося состояния.


источники:

http://5fan.ru/wievjob.php?id=36357

http://megalektsii.ru/s50464t11.html