Замена переменной в нелинейном уравнении

Метод замены переменной

Метод замены переменной – это такой способ решения, при котором в уравнение (или неравенство) вводится новая переменная, в результате чего оно становится более простым.

Этот метод один из самых популярных при решении сложных заданий, в частности, в ЕГЭ и ОГЭ.

У нас довольно сложное уравнение. А если раскрыть скобки, оно станет еще сложнее. Что делать? Давайте попробуем заменить переменную.

Заменим выражение \(x+\frac<1>\) буквой \(t\).

Получилось обычное квадратное уравнение! Решив его, найдем чему равно \(t\), после чего, сделав обратную замену, вычислим \(x\).

Когда не стоит вводить новую переменную? Когда это не сделает уравнение проще. Например, если старая переменная остается, несмотря на замену:

Попробуем сделать замену здесь.

Заменим выражение \(\sin x\) буквой \(t\).

Видим, что в этой замене нет никакого смысла – она не упростила уравнение, даже наоборот, усложнила его, потому что теперь у нас в уравнении две переменные.

Примеры использования метода замены переменной

Заметим, что \(x^4=(x^2 )^2\) (см. свойства степеней ). Тогда наше уравнение приобретает следующий вид.

Теперь используем метод замены.

Вводим новую переменную, заменяя \(x^2\) на \(t\).

Мы нашли чему равно \(t\), но найти-то надо иксы! Поэтому делаем обратную замену.

Ответ: \(±1\); \(±\) \(\frac<1><2>\) .

Весьма частая ошибка при использовании этого метода: забыть «вернуться к иксам», то есть не сделать обратную замену. Помните – нам нужно найти \(x\), а не \(t\)! Поэтому возврат к \(x\) — строго обязателен!

Пример. Решить неравенство: \(\log^2_3⁡x-\log_3⁡x-2>0\)

Приступим к решению.

Раскладываем левую часть неравенства на множители .

Теперь нужно вернуться к исходной переменной – иксу. Для этого перейдем к совокупности , имеющей такое же решение, и сделаем обратную замену.

Суть и способы линеаризации нелинейных динамических систем

Линеаразиция — один из наиболее распространенных методов анализа нелинейных систем. Идея линеаризации — использование линейной системы для аппроксимации поведения решений нелинейной системы в окрестности точки равновесия.

Линеаризация позволяет выявить большинство качественных и особенно количественных свойств нелинейной системы.

Методы линеаризации имеют ограниченный характер, то есть эквивалентность исходной нелинейной системы и ее линейного приближения сохраняется лишь для ограниченных пространственных или временных масштабов системы, или для определенных процессов, причем, если система переходит из одного режима работы в другой, то следует изменить и ее линеаризованную модель.

Линеаризация нелинейных динамических систем методом замены переменных

Линеаризация системы нелинейных уравнений в окрестности точки равновесия может быть достигнута путем замены переменных так, чтобы точка равновесия превратилась в начало координат.

Уравнения, полученные в результате указанного действия, будут линейными и называться линеаризацией исходной системы. Точки исходной системы, находящиеся в окрестности точки равновесия, будут соответствовать точкам в окрестности начала координат новой системы. Нас будет интересовать:

  1. значение новых переменных, близкие к нулю;
  2. при каких условиях нелинейными выражениями можно пренебречь.

Рассмотрим нелинейную систему: (1) что имеет точки равновесия (p, q). Преобразование u=x-p v=y-q переводит точки равновесия p, q в начало координат. Дифференцирование дает: (2) После замены переменных, подставив их новые значения в каждое уравнение, выделим линейную часть: где F(u,v) и G(u,v) и состоят только из нелинейных выражений. Говорят, что линейная система есть линерализацией системы (1) при таких условиях: Эти последние условия обеспечивают то, что нелинейные выражения F(u,v) и G(u,v) на столько малы по сравнению с u и v при приближении к точке равновесия, что ими можно пренебречь.

Линеаризация на основе якобиана

Замену переменных можно использовать и при другой организации линеаризации. Производят замену: где Это может быть записано в виде: где называется якобиан.

Методы решения систем уравнений с двумя переменными

п.1. Метод подстановки

Вариант 1
Шаг 1. Из одного уравнения выразить y через x: y(x).
Шаг 2. Подставить полученное выражение во второе уравнение и найти x.
Шаг 3. Подставить найденный x в y(x) и найти y.
Шаг 4. Записать полученные пары решений. Работа завершена.

Вариант 2
Шаг 1. Из одного уравнения выразить x через y: x(y).
Шаг 2. Подставить полученное выражение во второе уравнение и найти y.
Шаг 3. Подставить найденный y в x(y) и найти x.
Шаг 4. Записать полученные пары решений. Работа завершена.

п.2. Метод сложения

п.3. Метод замены переменных

Иногда удобно ввести новые переменные и решить систему для них.
А затем, вернуться к исходным переменным и найти их значения.

п.4. Графический метод

Графический метод подробно рассмотрен в §15 данного справочника.

п.5. Примеры

Пример 1. Решите систему уравнений:
а) \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
Решаем методом подстановки: \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
Для нижнего уравнения: \( \mathrm \)
Подставляем в верхнее уравнение: \( \mathrm \)

б) \( \left\< \begin < l >\mathrm & \\ \mathrm <(x^2+y^2)xy=10>& \end\right. \)
Замена переменных: \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
Выразим (x 2 + y 2 ) через a и b:
x 2 + y 2 = (x 2 + y 2 + 2xy) – 2xy = (x + y) 2 – 2xy = a 2 – 2b
Подставляем: \( \left\< \begin < l >\mathrm & \\ \mathrm <(a^2-2b)b=10>& \end\right.\Rightarrow \left\< \begin < l >\mathrm & \\ \mathrm <9b-2b^2=10>& \end\right. \)
Решаем нижнее уравнение: 2b 2 – 9b + 10 = 0 $$ \mathrm< D=9^2-4\cdot 2\cdot 10=1,\ \ b=\frac<9\pm 1><4>> = \left[\begin < l >\mathrm & \\ \mathrm & \end\right. $$ Возвращаемся к исходным переменным: \( \left[\begin < l >\left\<\begin < l >\mathrm & \\ \mathrm & \end\right.& \\ \left\<\begin < l >\mathrm & \\ \mathrm & \end\right. \end\right. \)


источники:

http://libtime.ru/modelirovanie/sut-i-sposoby-linearizacii-nelineynyh-dinamicheskih-sistem.html

http://reshator.com/sprav/algebra/9-klass/metody-resheniya-sistem-uravnenij-s-dvumya-peremennymi/