Замена переменных уравнениях частными производными

Математический портал

Nav view search

Navigation

Search

  • Вы здесь:
  • Home
  • Математический анализ
  • Замена переменных в дифференциальных выражениях.

Замена переменных в дифференциальных выражениях.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Часто в дифференциальных выражениях входящие в них производные по одним переменным необходимо выразить через производные по новым переменным.

Примеры.

7.165. Преобразовать уравнение $$x^4\frac+2x^3\frac-y=0,$$ полагая $x=\frac<1>.$

Решение.

Подставим найденные значения производных и выражение $x=\frac<1>$ в заданное уравнение.

Ответ: $\frac-y=0.$

7.167. Преобразовать уравнение $$3\left(\frac\right)^2-\frac\frac-\frac\left(\frac\right)^2=0,$$ приняв $y$ за аргумент.

Решение.

Выразим производные от $y$ по $x$ через производные от $x$ по $y:$ $$\frac=\frac<1><\frac>,$$

Подставим полученные выражения производных в заданное уравнение. Получаем

Таким образом, получили ответ.

7.168. Преобразовать уравнение $$(xy’-y)^2=2xy(1+y’^2),$$ перейдя к полярным координатам.

Решение.

$$dx=\cos\varphi dr-r\sin\varphi d\varphi,\qquad dy=\sin\varphi dr+r\cos\varphi d\varphi,$$

$$r^4 d\varphi^2=r^2\sin2\varphi dr^2+r^4\sin 2\varphi d\varphi^2\Rightarrow$$

$$\sin2\varphi dr^2=(1-\sin 2\varphi)r^2 d\varphi^2 \Rightarrow\left(\frac\right)^2=\frac<1-\sin 2\varphi> <\sin 2\varphi>r^2\Rightarrow$$

7.170. Преобразовать уравнение $$(x+y)\frac<\partial z><\partial x>-(x-y)\frac<\partial z><\partial y>=0,$$ перейдя к новым независимым переменным $u$ и $v,$ если $u=\ln\sqrt,\,\, v=arctg\frac.$

Решение.

Выразим частные производные от $z$ по $x$ и $y$ через частные производные от $z$ по $u$ и $v.$

Подставим найденные выражения производных в заданное уравнение:

7.174. Преобразовать уравнение $$(xy+z)\frac<\partial z><\partial x>+(1-y^2)\frac<\partial z><\partial y>=x+yz,$$ приняв за новые независимые переменные $u=yz-x,\,\, v=xz-y$ и за новую функцию $w=xy-z.$

Решение.

$$ ydx+xdy-dz =\frac<\partial w><\partial u>\cdot \left(-dx+zdy+ydz\right) +\frac<\partial w><\partial v>\cdot \left(zdx+xdz-dy \right)\Rightarrow$$

Подставим найденные выражения $\frac<\partial z><\partial x>$ и

$\frac<\partial z><\partial y>$ в заданное уравнение. Получим

Замена переменных

Выражения, содержащие различные функции и их производные, постоянно встречаются в математике и ее приложениях. Целесообразность перехода к новым независимым переменным, а иногда и к новым функциям, основана как на особой роли новых переменных в изучаемом вопросе, так и на упрощениях, к которым приводит выбранная замена переменных.
Техника замены переменных основана на правилах дифференцирования сложных функций и функций, заданных неявно при помощи уравнений. Такая техника будет продемонстрирована на нескольких достаточно содержательных примерах. Обоснование всех условий, при выполнении которых замена переменных будет законной, в большинстве примеров не представляет труда и поэтому не обсуждается.

В уравнении \(\displaystyle x^2+\frac+x\frac+y=0\) сделать замену независимой переменной \(x=e^t\).

\(\triangle\) Если \(z(t) = y(e^t)\), то, применяя правило нахождения производной сложной функции, получаем
$$
\frac=e^t\frac=x\frac,\nonumber
$$
откуда \(\displaystyle \frac=x\frac\).

Заметим, что уравнение \(\displaystyle \frac+z=0\) является уравнением гармонических колебаний, а его решением является \(z=C_<1>\sin t + C_2\cos t\). Поэтому при \(x > 0\) решение исходного уравнения имеет следующий вид: \(y= C_1 \sin (\ln x) + C_2\cos (\ln x)\). Так как уравнение не изменяет своего вида при замене \(x\) на \(-x\), то при любом \(x\in R, \ x\neq 0\), решение имеет следующий вид:
$$
y(x)=C_1\sin(\ln |x|) + C_2\cos(\ln |x|).\qquad\blacktriangle\nonumber
$$

В системе уравнений:
$$
\left\<\begin\displaystyle\frac=y-2kx(x^2+y^2),\\\displaystyle\frac=-x-2kx(x^2+y^2),\\\displaystyle k > 0,\end\right.\nonumber
$$
перейти к полярным координатам.

\(\triangle\) Умножим первое уравнение на \(x\), второе на \(y\) и сложим. Аналогично умножим первое уравнение на \(y\) и вычтем из него второе уравнение, умноженное на \(x\). Получим новую систему уравнений, при \(x^2+y^2 > 0\) эквивалентную исходной системе уравнений,
$$
\left\<\begin\displaystyle x\frac+y\frac=-2k(x^2+y^2)^2,\\\displaystyle y\frac-x\frac=y^2+x^2.\end\right.\label
$$

Но \(x^2+y^2=r^2\), \(x=r\cos\varphi\), \(y=r\sin\varphi\). Поэтому систему \eqref можно записать в виде:
$$
\left\<\begin\displaystyle r\frac=-2kr^4,\\\displaystyle\frac=1.\end\right.\Longleftrightarrow\left\<\begin\displaystyle\frac=-2kr^3,\\\displaystyle\frac=1.\end\right.\label
$$

Заметим, что система \eqref легко решается. Получаем решение в виде:
$$
r=\frac<1><\sqrt>,\quad \varphi=\varphi_0+t\quad (-t_0 Пример 3.

Преобразовать уравнение \(y’y»’-3(y»)^2=x\), принимая \(y\) за независимую переменную, а \(x\) — за неизвестную функцию.

Таким образом, при \(y’\neq 0\) уравнение преобразуется к виду \(x»’+x(x’)^5=0\). Это частный случай уравнения общего вида \(x»’=\Phi(y,x,x’,x»)\) с непрерывно дифференцируемой в \(R^4\) функцией \(\Phi(y,u,v,w)\). Уравнения такого типа хорошо изучены в теории обыкновенных дифференциальных уравнений. Исходное уравнение не имело стандартного вида. \(\blacktriangle\)

Преобразовать выражение \(\omega=\displaystyle \frac<\partial^2 u><\partial x^2>+\frac<\partial^2 u><\partial y^2>\) к полярным координатам, полагая \(x=r\cos\varphi, \ y=r\sin\varphi\). Найти решение уравнения Лапласа \(\displaystyle \frac<\partial^2 u><\partial x^2>+\frac<\partial^2 u><\partial y^2>=0\), зависящее только от полярного радиуса \(r\).

Пусть \(u=v(r)\) есть решение уравнения Лапласа, зависящее только от \(r\). Тогда функция \(v(r)\) должна быть решением дифференциального уравнения
$$
\frac<\partial^2v><\partial r>+\frac1r\frac<\partial v><\partial r>=0\quad\Longleftrightarrow\quad\frac\left(r\frac\right)=0\nonumber
$$
$$
r\frac=C,\quad\Longrightarrow\quad v=C_1\ln r+C_2,\label
$$
где \(C_1\) и \(C_2\) — произвольные постоянные. \(\blacktriangle\)

Сделать в уравнении колебаний струны
$$
\frac<\partial^2u><\partial t^2>-a^2\frac<\partial^2u><\partial x^2>=0,\quad a > 0,\quad -\infty Решение.

Решение уравнения \(\displaystyle\frac<\partial^2\omega><\partial\xi\partial\eta>=0\) легко находится. Так как \(\displaystyle\frac\partial<\partial\xi>\left(\frac<\partial\omega><\partial\eta>\right)=0\), то \(\displaystyle\frac<\partial\omega><\partial\eta>=\varphi(\eta)\), где \(\varphi(\eta)\) — произвольная непрерывная функция \(\eta\).

Пусть \(\Phi(\eta)\) есть ее первообразная на \(R\). Тогда, интегрируя уравнение \(\omega_<\eta>=\varphi(\eta)\), получаем, что \(\omega=\Phi(\eta)+\Psi(\xi)\), где \(\Psi(\xi)\) — произвольная функция.

Если считать, что функции \(\Phi(\eta)\) и \(\Psi(\xi)\) есть непрерывно дифференцируемые функции, то общее решение уравнения \eqref имеет следующий вид:
$$
u(x,t)=\Psi(x-at)+\Phi(x+at).\quad\blacktriangle\nonumber
$$

К замене переменных при решении дифференциальных уравнений в частных производных Текст научной статьи по специальности « Математика»

Аннотация научной статьи по математике, автор научной работы — Юлдашев Т.К.

Обсуждается проблема, возникающая при замене переменных в дифференциальных уравнениях в частных производных. При переходе в полярную систему координат для уравнения Лапласа получается более сложное уравнение.

Похожие темы научных работ по математике , автор научной работы — Юлдашев Т.К.

TO THE CHANGE OF VARIABLES ON SOLVING PARTIAL DIFFERENTIAL EQUATIONS

The problem arising on changing variables in partial differential equations is discussed. On proceeding to the polar coordinate system most complicated equation for Laplasian equation yields.

Текст научной работы на тему «К замене переменных при решении дифференциальных уравнений в частных производных»

1. Деменков А. Г., Илюшин Б. Б., Черных Г. Г. Численное моделирование осесимметричных турбулентных струй // ПМТФ. 2008. Т. 49, № 5. C.55-60.

2. Demenkov A. G., Ilyushin B. B., Chernykh G. G. Numerical model of round turbulent jets // J. Engineering Thermophysics. 2009. Vol. 18. № 1. P. 49-56.

3. Rodi W. Turbulence models and their application in hydraulics. Karlsruhe: Univ. of Karlsruhe, 1980.

4. Wygnanski I., Fiedler H. Some measurements in the self-preserving jet // J. Fluid Mech. 1969. Vol. 38. P. 577-612.

5. Panchapakesan N. R., Lumley J. L. Turbulence measurements in axisymmetric jets of air and helium. Pt. 1. Air jet // J. Fluid Mech. 1993. Vol. 246. P. 197-223.

Institute of Computational Modelling, Russian Academy of Sciences, Siberian Branch, Russia, Krasnoyarsk SIMILARITY SOLUTIONS FOR ONE MODEL OF A ROUND TURBULENT JET

Semi-empirical model of a round turbulent jet including transport differential equations of the normal Reynolds stresses is considered. Similarity reduction of the model to a system of ordinary differential equations (ODEs) is obtained. System of ODEs satisfying natural boundary conditions is solved numerically. We use modified shooting method and asymptotic expansion of the solution in the vicinity of the singular point to solve the problem. The obtained solutions are in close agreement with experimental data and computation results of the full model.

Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева, Россия, Красноярск

К ЗАМЕНЕ ПЕРЕМЕННЫХ ПРИ РЕШЕНИИ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

В ЧАСТНЫХ ПРОИЗВОДНЫХ

Обсуждается проблема, возникающая при замене переменных в дифференциальных уравнениях в частных производных. При переходе в полярную систему координат для уравнения Лапласа получается более сложное уравнение.

Известно, что при решении дифференциальных уравнений в частных производных, заданных в прямоугольной системе координат, иногда удобно будет переходить в другую систему координат с помощью замены переменных Х=ф(х,у) и ^ = х,у) . При этом используются следующие преобразования: дu Зй ЗХ + Зй 3^ Зм Зй ЗХ+Зй 3^ (1) 3х ЗХ 3х 3^ 3х 3у ЗХ 3у 3^ 3у

3 | 3u 3X +3u 3hj+ 3 Ç 3u 3X +3u 3h 3Xè3X 3x 3h 3x 0 3hè3X 3x 3h 3x > 2


источники:

http://univerlib.com/mathematical_analysis/functions_several_variables/variable_change/

http://cyberleninka.ru/article/n/k-zamene-peremennyh-pri-reshenii-differentsialnyh-uravneniy-v-chastnyh-proizvodnyh