Замена уравнения другим уравнением которое является его следствием

Замена уравнения другим уравнением которое является его следствием

_____________ системы трех уравнений с тремя неизвестными называют такую упорядоченную тройку чисел (х0; у0; z0), при подстановке которой в каждое из уравнений системы имеют смысл выражения f1(х0; y0; z0), g1(х0; у0; z0), f2(x0; y0; z0), g2(x0; y0; z0), f3(х0; у0; z0), g3(x0; y0; z0) и справедливы числовые равенства:

Верны ли утверждения?
А) Возведение неравенства в нечетную степень 2m + 1 (mÎN) приводит данное неравенство к неравенству, равносильному ему на множестве всех действительных чисел
В) Логарифмирование неравенства a f(x)>a g(x) т.е. заменa этого неравенства при а>1 неравенством f(x)>g(x), а при 0 1 неравенством f(x)>g(x), а при 0 0 не имеет решений
В) Множество всех решений неравенства |х2 – 4| +|x + 1| – 3 > 0 на промежутке [-1; 2) составляет интервал (-1; 2)
Подберите правильный ответ
Верны ли утверждения?
А) На промежутке (-∞; -2] по определению абсолютной величины |х2-4| = х2-4
В) На промежутке (-∞; -2] по определению абсолютной величины |x + 1| = -x- 1
Подберите правильный ответ
Верны ли утверждения?
А) На промежутке (-∞; 1) уравнение |x — 1| + |x — 2| + |x — 3| = 6 равносильно уравнению: -(x — 1) — (x — 2) — (x — 3) = 6
В) На промежутке (-∞; 1) уравнение |x — 1| + |x — 2| + |x — 3| = 6 имеет один корень
Подберите правильный ответ
Верны ли утверждения?
А) На промежутке [-1; 2): |х2-4| = -х2 + 4
В) На промежутке [-1; 2): |x+1| = -x-1
Подберите правильный ответ
Верны ли утверждения?
А) На промежутке [1; 2) уравнение |x — 1| + |x — 2| + |x — 3| = 6 равносильно уравнению: x — 1 + x – 2 + x — 3 = 6
В) На промежутке [1; 2) уравнение |x — 1| + |x — 2| + |x — 3| = 6 имеет единственный корень, равный 1,5
Подберите правильный ответ
Верны ли утверждения?
А) На промежутке [1; 2) уравнение |x — 1| + |x — 2| + |x — 3| = 6 равносильно уравнению: x — 1 -(x-2)-(x-3) = 6
В) На промежутке [1; 2) уравнение |x — 1| + |x — 2| + |x — 3| = 6 не имеет корней
Подберите правильный ответ
Верны ли утверждения?
А) На промежутке [2; +∞) |х2-4| = -х2 + 4
В) На промежутке [2; +∞) |x+1| = -x-1
Подберите правильный ответ
Верны ли утверждения?
А) На промежутке [2; +∞) |х2-4| = х2 — 4
В) На промежутке [2; +∞) |x+1| = x+1
Подберите правильный ответ
Верны ли утверждения?
А) На промежутке [2; 3) уравнение |x — 1| + |x — 2| + |x — 3| = 6 не имеет корней
В) На промежутке [2; 3) уравнение |x — 1| + |x — 2| + |x — 3| = 6 равносильно уравнению x-1 + x-2-(x-3) = 6
Подберите правильный ответ
Верны ли утверждения?
А) На промежутке [3; +∞) уравнение |x — 1| + |x — 2| + |x — 3| = 6 равносильно уравнению x-1+x-2+x-3 = 6
В) На промежутке [3; +∞) уравнение |x-1| + |x-2| + |x-3| = 6 имеет единственный корень 4
Подберите правильный ответ
Верны ли утверждения?
А) Неравенства >1 и х2 > 1 не являются равносильными на множестве всех действительных чисел, но они равносильны на множестве всех положительных чисел
В) Неравенства x>1 и x3>1 являются равносильными на множестве всех действительных чисел
Подберите правильный ответ
Верны ли утверждения?
А) Неравенства af(x)>ag(x) и f(x)>g(x) равносильны при 0 ag(x) и f(x) ag(x) и f(x)>g(x) равносильны при a > 1
В) Неравенства af(x)>ag(x) и f(x) 1
Подберите правильный ответ
Верны ли утверждения?
А) Неравенства af(x)>ag(x) и f(x)>g(x) равносильны при а > 1
В) Неравенства af(x)>ag(x) и f(x) logag(x) при а>1 равносильно двойному неравенству: 0 logag(x) при 0 g(x)>0
Подберите правильный ответ
Верны ли утверждения?
А) Неравенство logaf(x)>logag(x) при а>1 равносильно двойному неравенству: f(x)>g(x)>0
В) Неравенство logaf(x)>logag(x) при 0 0, а≠1) приводит к уравнению f(x) = g(x), равносильному исходному на множестве всех действительных чисел
Подберите правильный ответ
Верны ли утверждения?
А) Перенос члена неравенства (с противоположным знаком) из одной части неравенства в другую приводит данное неравенство к неравенству, равносильному ему на множестве всех действительных чисел
В) Умножение (деление) обеих частей неравенства на положительное число приводит данное неравенство к неравенству, равносильному ему на множестве всех действительных чисел
Подберите правильный ответ
Верны ли утверждения?
А) Перенос члена уравнения (с противоположным знаком) из одной части уравнения в другую приводит данное уравнение к уравнению, равносильному ему на множестве всех действительных чисел
В) Умножение (деление) обеих частей уравнения на не равное нулю число приводит данное уравнение к уравнению, равносильному ему на множестве всех действительных чисел
Подберите правильный ответ
Верны ли утверждения?
А) Переход от уравнения log2(х5 + х2 – 4) = log2(х5 + 4х – 7) к уравнению-следствию х5 + х2 — 4 = х5 + 4х – 7 осуществляется при помощи потенцирования исходного уравнения
В) Уравнение 2х — 14 = х2 — 6х – 7 является следствием уравнения
Подберите правильный ответ
Верны ли утверждения?
А) Потенцирование уравнения lg(x2-4) = lg(4x-7) приводит к уравнению-следствию: х2 — 4 = 4х — 7, имеющему корень, посторонний для исходного уравнения
В) Освобождение уравнения от знаменателей приводит к уравнению-следствию (х2-1)(x + 3) = (х2-9)(x-2), имеющему корень, посторонний для исходного уравнения
Подберите правильный ответ
Верны ли утверждения?
А) При переходе к уравнению-следствию невозможно потерять корни исходного уравнения
В) Если при решении данного уравнения совершен переход к уравнению-следствию, то необходимо проверить, все ли корни уравнения-следствия являются корнями исходного уравнения
Подберите правильный ответ
Верны ли утверждения?
А) При решении уравнений нельзя применять преобразования, приводящие к потере корней исходного уравнения
В) Уравнение: , являющееся следствием уравнения имеет корень, посторонний для уравнения
Подберите правильный ответ
Верны ли утверждения?
А) Приведение подобных членов (f(x) — f(x)=0) приводит к уравнению, равносильному исходному на том множестве М, на котором определена функция f(x)
В) Применение некоторых формул (логарифмических, тригонометрических и др.) приводит к уравнению, равносильному исходному на том множестве М, на котором одновременно определены обе части применяемой формулы
Подберите правильный ответ
Верны ли утверждения?
А) Приведение подобных членов уравнения приводит к уравнению-следствию
В) Если при решении некоторого уравнения проводилось приведение подобных членов, то необходима проверка всех найденных корней
Подберите правильный ответ
Верны ли утверждения?
А) Применение правил умножения многочленов и формул сокращенного умножения многочленов приводит данное неравенство к неравенству, равносильному ему на множестве всех действительных чисел
В) Приведение подобных членов многочлена, не зависящих от х, приводит данное неравенство к неравенству, равносильному ему на множестве всех действительных чисел
Подберите правильный ответ
Верны ли утверждения?
А) Применение правил умножения многочленов и формул сокращенного умножения многочленов приводит данное уравнение к уравнению, равносильному ему на множестве всех действительных чисел
В) Приведение подобных членов многочлена, не зависящих от x, приводит данное уравнение к уравнению, равносильному ему на множестве всех действительных чисел
Подберите правильный ответ
Верны ли утверждения?
А) Простейшее логарифмическое уравнение — уравнение: loga х = b, где а — данное положительное, не равное 1 число, b — данное действительное число
В) Простейшее показательное уравнение — уравнение: ах = b, где а — данное положительное, не равное 1 число, b — данное действительное число
Подберите правильный ответ
Верны ли утверждения?
А) Простейшие логарифмические неравенства — неравенства: loga x > b и loga x b, ах g(x) и
В) Пусть 2m + 1 — нечетное натуральное число (m Î N), тогда равносильны неравенства:
Подберите правильный ответ
Верны ли утверждения?
А) Пусть 2m — четное натуральное число (m Î N) и пусть на некотором множестве М обе функции f(x) и g(x) неотрицательны, тогда на этом множестве равносильны уравнения: f(x) = g(x) и
В) Пусть 2m+ 1 — нечетное натуральное число (m Î N), тогда равносильны уравнения: f(x) = g(x) и
Подберите правильный ответ
Верны ли утверждения?
А) Пусть n — фиксированное четное натуральное число. Тогда уравнение: (f(x))n = (g(x))n является следствием уравнения f(x) = g(x)
В) Уравнения, содержащие неизвестное под знаком корня — иррациональные уравнения
Подберите правильный ответ
Верны ли утверждения?
А) Пусть n — фиксированное четное натуральное число. Тогда уравнение: f(x) = g(x) является следствием уравнения (f(x))n = (g(x))n
В) Пусть а — данное число, такое, что а>0 и а≠1. Тогда уравнение: f(x) = g(x) является следствием уравнения logaf(x) = logag(x)
Подберите правильный ответ
Верны ли утверждения?
А) Пусть R — область существования функции f(u) и пусть эта функция непрерывна на R. Тогда если функция f(u) возрастает на R, то равносильны неравенства f(a(x))>f(b(x)) и a(x)>b(x)
В) Пусть R — область существования функции f(u) и пусть эта функция непрерывна на R. Тогда если функция f(u) убывает на R, то равносильны неравенства f(a(x))>f(b(x)) и a(x) c и f(x)>ac при 0 ac при 0 c и f(x)>ac при 0 ac при а>1
Подберите правильный ответ
Верны ли утверждения?
А) Пусть а и с — данные числа, тогда равносильны неравенства: logaf(x)>c и f(x)>ac при а>1
В) Пусть а и с — данные числа, тогда равносильны неравенства: loga f(x) ac при 0 c и f(x)>ac при а>1
В) Пусть а и с — данные числа, тогда равносильны неравенства: loga f(x) ac при а>1
Подберите правильный ответ
Верны ли утверждения?
А) Пусть на некотором множестве М обе функции f(x) и g(x) положительны, тогда на множестве М равносильны неравенства: logaf(x) > logag(x) и f(x) > g(x) при а>1
В) Пусть на некотором множестве М обе функции f(x) и g(x) положительны, тогда на множестве М равносильны неравенства: logaf(x) > logag(x) и f(x) logag(x) и f(x) > g(x) при а>1
В) Пусть на некотором множестве М обе функции f(x) и g(x) положительны, тогда на множестве М равносильны неравенства: logaf(x) > logag(x) и f(x) > g(x) при 0 logag(x) и f(x) 1
В) Пусть на некотором множестве М обе функции f(x) и g(x) положительны, тогда на множестве М равносильны неравенства: logaf(x) > logag(x) и f(x) g(x) и f(x)j(x)>g(x)j(x)
В) Пусть на некотором множестве М функция j(x) отрицательна, тогда на этом множестве равносильны неравенства f(x)>g(x) и f(x)j(x) f(b(x)) равносильно системе:
В) Пусть область существования функции f(u) есть промежуток М и пусть эта функция непрерывна на промежутке М. Тогда если функция f(u) убывает на этом промежутке М, то неравенство f(a(x))>f(b(x)) равносильно системе:
Подберите правильный ответ
Верны ли утверждения?
А) Пусть фиксированное число а таково, что а>0 и а ≠ 1, и пусть на некотором множестве М обе функции f(x) и g(x) положительны. Тогда на множестве М уравнения: f(x) = g(x) и равносильны
В) Пусть фиксированное число а таково, что а g(x) неравенством: f(x)j(x)>g(x)j(x), является равносильным преобразованием только на том множестве М, на котором функция j(x) положительна
В) Приведение подобных членов (f(x) — f(x) = 0) приводит к неравенству, равносильному исходному только на том множестве М, на котором определена функция f(x)
Подберите правильный ответ
Верны ли утверждения?
А) Уравнение 2log2x = 1 имеет два корня
В) Уравнение log2x2=1 имеет два корня
Подберите правильный ответ
Верны ли утверждения?
А) Уравнение 2log2x = 1 имеет один корень
В) Уравнение log2x2=1 имеет один корень
Подберите правильный ответ
Верны ли утверждения?
А) Уравнение один корень
В) Уравнение х2 — 4х + 3 = 2х – 5 имеет два корня
Подберите правильный ответ
Верны ли утверждения?
А) Уравнение имеет два корня
В) Уравнение х2 = 1 имеет только один корень
Подберите правильный ответ
Верны ли утверждения?
А) Уравнение имеет только один корень
В) Уравнение х2 = 1 имеет два корня
Подберите правильный ответ
Верны ли утверждения?
А) Уравнение равносильно совокупности нескольких систем, если любое решение уравнения является решением хотя бы одной из этих систем, а любое решение каждой из систем является решением уравнения
В) Неравенство равносильно совокупности нескольких систем, если любое решение неравенства является решением хотя бы одной из этих систем, а любое решение каждой из систем является решением неравенства
Подберите правильный ответ
Верны ли утверждения?
А) Уравнение х2 – x — 6 = 0 имеет два корня: х1 = 3 и х2 = -2
В) Уравнение х2 + log2(x3 + x — l) = x + 6 + log2(х3 + x — 1) имеет единственный корень х1= 3
Подберите правильный ответ
Верны ли утверждения?
А) Уравнение х2 = 1 есть следствие уравнения
В) Уравнение есть следствие уравнения х2 = 1
Подберите правильный ответ
Верны ли утверждения?
А) Уравнение: х2 – x — 6 = 0 является следствием уравнения х2 + log2(x3 + x — l) = x + 6 + log2(х3 + x — 1)
В) Уравнение х2 – x — 6 = 0 имеет единственный корень х1= 3
Подберите правильный ответ
Верны ли утверждения?
А) Уравнения 2log2x = 1 и log2x2=1 не являются равносильными на множестве всех действительных чисел
В) Уравнения 2log2x = 1 и log2x2=1 являются равносильными на множестве всех положительных действительных чисел
Подберите правильный ответ
Верны ли утверждения?
А) Уравнения =1 и х2=1 не являются равносильными на множестве всех действительных чисел
В) Уравнения =1 и х2=1 являются равносильными на множестве всех неотрицательных действительных чисел
Подберите правильный ответ
Верны ли утверждения?
А) Уравнения и х2 = 1 не являются равносильными на множестве всех действительных чисел
В) Уравнения и х2 = 1 являются равносильными на множестве всех целых чисел
Подберите правильный ответ
Верны ли утверждения?
А) Число 1 является корнем уравнения
В) Число 1 является корнем уравнения (log2x)2 – 2log2x = 0
Подберите правильный ответ
Верны ли утверждения?
А) Число х1= 3 является корнем уравнения х2 + log2(x3 + x — l) = x + 6 + log2(х3 + x — 1)
В) Число х2= -2 не является корнем уравнения х2 + log2(x3 + x — l) = x + 6 + log2(х3 + x — 1)
Подберите правильный ответ
__________
____________ (а; b) — множество всех действительных чисел x, удовлетворяющих двойному неравенству а 0 надо решить уравнения х2-4=0 и x+1=0 и отметить на координатной оси полученные корни: __________
Для решения нестрогого неравенства f(x) ³ g(x) надо: решить ____________
Если два неравенства равносильны на множестве всех действительных чисел, то говорят, что неравенства ______________
Если два уравнения равносильны на множестве всех действительных чисел, то в таких случаях говорят, что уравнения _____________
Если к уравнению применить формулу , то получится уравнение: ______________, которое является следствием исходного уравнения
Если множество решений системы уравнений пустое, то в этом случае говорят, что система ____________________ (два варианта)
Если уравнение x2 — 2x + log2x = 3 + log2x имеет корни, то эти корни принадлежат множеству М = _________________
Замену одного неравенства другим неравенством, равносильным ему на множестве М, называют
Замену одного уравнения другим уравнением, равносильным ему на множестве М, называют равносильным ___________ на множестве М от одного уравнения к другому
Замену разности f(x) — f(x) нулем называют ____________________
Иногда для записи равносильности уравнений, неравенств, систем, совокупностей систем употребляют знак ____.
Иногда для записи совокупности систем их записывают друг под другом и объединяют скобкой вида: ___
К системе-следствию приводят следующие преобразования: __________________
Каждое из неравенств f(x)g(x)>0 и равносильно совокупности двух систем _____
Корень уравнения 2log2x = 1 равен х1= ____
Корень уравнения log2(х5 + х2 – 4) = log2(х5 + 4х – 7) равен _________________
Корень уравнения log2x2=1 равны: ____
Корень уравнения равен _________________
Корень уравнения равен: ______________
Корень уравнения: равен _______________
Корни уравнения (log2x)2 – 2log2x = 0 равны: ______________
Корни уравнения 2х — 14 = х2 — 6х – 7 равны: _________________
Любое решение уравнения lg(1 – x2) = lg 2x находится на множестве М = _________
Множество всех решений неравенства: есть интервал _____________
На множестве всех положительных чисел каждое из уравнений: 2log2x = 1 и log2x2=1 имеет только один корень х = _______
На множестве М=(0; 1) уравнение lg(1 – x2) = lg 2x равносильно уравнению
На промежутках ____________ уравнение |x — 1| + |x — 2| + |x — 3| = 6 не имеет корней
На промежутке (-2; -1) неравенство |х2 – 4| +|x + 1| – 3 > 0 равносильно неравенству: ____________________
На промежутке (-∞; -2] неравенство |х2 – 4| +|x + 1| – 3 > 0 равносильно неравенству: ____________________
На промежутке (-∞; 1) по определению абсолютной величины: ____________
На промежутке (-∞; 1) уравнение |x — 1| + |x — 2| + |x — 3| = 6 имеет единственный корень, равный ____
На промежутке (-∞; 1) уравнение |x — 1| + |x — 2| + |x — 3| = 6 равносильно уравнению: __________________
На промежутке [-1; 2) неравенство |х2 – 4| +|x + 1| – 3 > 0 равносильно неравенству:
На промежутке [1; 2) по определению абсолютной величины: ____________
На промежутке [1; 2) уравнение |x — 1| + |x — 2| + |x — 3| = 6 равносильно уравнению: ________________
На промежутке [2; +∞) неравенство |х2 – 4| +|x + 1| – 3 > 0 равносильно неравенству:
На промежутке [2; 3) по определению абсолютной величины: _____________________
На промежутке [2; 3) уравнение |x — 1| + |x — 2| + |x — 3| = 6 равносильно уравнению ____________________
На промежутке [3; +∞) по определению абсолютной величины: ____________
На промежутке [3; +∞) уравнение |x — 1| + |x — 2| + |x — 3| = 6 равносильно уравнению ____________________
Неравенства af(x)>ag(x) и f(x)>g(x) равносильны при _________
Неравенства af(x)>ag(x) и f(x) 0 равносильно совокупности систем: ______________
Неравенство равносильно совокупности систем _____________
Неравенство равносильно системе
Неравенство равносильно системе __________
Неравенство равносильно совокупности двух систем _____
Неравенство равносильно двойному неравенству _____
Неравенство log2(3x — 1) g(x) + j(x) равносильно системе ____________
Неравенство logaf(x)>logag(x) при 0 logag(x) при а > 1 равносильно двойному неравенству ______________
Неравенство |f(x)| |x + 6| имеет множество решений: _____________
Объединение множеств А и В обозначают
Освобождение уравнения от знаменателей приводит к уравнению-следствию (х2-1)(x + 3) = (х2-9)(x-2), имеющему корень _______, посторонний для исходного уравнения
Переход от уравнения log2(х5 + х2 – 4) = log2(х5 + 4х – 7) к уравнению-следствию х5 + х2 — 4 = х5 + 4х – 7 осуществляется при помощи _______________ исходного уравнения
Полуинтервал [а; b) множество всех действительных чисел, удовлетворяющих ___________
Полуинтервал [а; b) множество точек оси x, состоящее из
Потенцирование уравнения lg(x2-4) = lg(4x-7) приводит к уравнению-следствию: х2 — 4 = 4х — 7, имеющему корень, равный _________, посторонний для исходного уравнения
Преобразования неравенства, приводящие данное неравенство к неравенству, равносильному ему на множестве всех действительных чисел: _______________
Преобразования неравенства, приводящие данное неравенство к неравенству, равносильному ему на множестве всех действительных чисел: _______________
Преобразования неравенства, приводящие данное неравенство к неравенству, равносильному ему на множестве всех действительных чисел: _______________.
Преобразования неравенства, приводящие исходное неравенство к неравенству, равносильному ему на некотором множестве чисел, но не равносильному на множестве всех действительных чисел: _______________
Преобразования неравенства, приводящие исходное неравенство к неравенству, равносильному ему на некотором множестве чисел, но не равносильному на множестве всех действительных чисел: _______________
Преобразования уравнения, приводящие данное уравнение к уравнению, равносильному ему на множестве всех действительных чисел
Преобразования уравнения, приводящие данное уравнение к уравнению, равносильному ему на множестве всех действительных чисел
Преобразования уравнения, приводящие данное уравнение к уравнению, равносильному ему на множестве всех действительных чисел
Преобразования уравнения, приводящие исходное уравнение к уравнению, равносильному ему на некотором множестве чисел, но не равносильному на множестве всех действительных чисел
Преобразования уравнения, приводящие исходное уравнение к уравнению, равносильному ему на некотором множестве чисел, но не равносильному на множестве всех действительных чисел
Преобразования уравнения, приводящие исходное уравнение к уравнению, равносильному ему на некотором множестве чисел, но не равносильному на множестве всех действительных чисел
При решении неравенства: |х2 – 4| +|x + 1| – 3 > 0 после того, как отметили на координатной оси полученные корни, обращающие в ноль выражения под знаком модуля, получаются четыре числовых промежутка: __________
Простейшее логарифмическое уравнение — уравнение __________________
Простейшее показательное уравнение — уравнение __________________
Простейшие логарифмические неравенства — неравенства __________________
Простейшие показательные неравенства — неравенства __________________
Пусть n — фиксированное четное натуральное число. Тогда уравнение: (f(x))n = (g(x))n является следствием уравнения f(x) = g(x)
Пусть R — область существования функции f(u) и пусть эта функция непрерывна на R. Тогда если функция f(u) возрастает на R, то равносильны неравенства ________________
Пусть R — область существования функции f(u) и пусть эта функция непрерывна на R. Тогда если функция f(u) убывает на R, то равносильны неравенства ________________
Пусть а и с — данные числа, тогда равносильны неравенства: loga f(x)>c и f(x)>ac при _____
Пусть а и с — данные числа, тогда равносильны неравенства: loga f(x) ac при _____
Пусть дано несколько уравнений и несколько неравенств с неизвестным x и пусть требуется найти все числа x, каждое из которых удовлетворяет каждому из этих уравнений и неравенств. Тогда говорят, что дана _________ уравнений и неравенств
Пусть даны два уравнения: f(x) = g(x) и р(x) = j(x). Если любой корень первого уравнения является корнем второго уравнения, то второе уравнение называют __________ первого
Пусть область существования функции f(u) есть промежуток М и пусть эта функция непрерывна и строго монотонна (т.е. возрастает или убывает) на этом промежутке. Тогда уравнение: f(a(x))= f(b(x)) равносильно системе ______________
Пусть область существования функции f(u) есть промежуток М и пусть эта функция непрерывна на промежутке М. Тогда если функция f(u) убывает на этом промежутке М, то неравенство f(a(x))>f(b(x)) равносильно системе ______________
Пусть область существования функции f(u) есть промежуток М и пусть эта функция непрерывна на промежутке М. Тогда, если функция f(u) возрастает на этом промежутке М, то неравенство f(a(x))>f(b(x)) равносильно системе ______________
Пусть число а таково, что а>0, а≠1. Тогда уравнение: равносильно системе
Расположите по порядку действия необходимые для решения неравенства: |х2 – 4| +|x + 1| – 3 > 0
Расположите числовые промежутки в порядке увеличения количества целых чисел, принадлежащих этим промежуткам
Система, равносильная исходной системе, получается также, если в одном из уравнений: __________________
Система-____________ данной системы уравнений — система уравнений, для которой является решением каждое решение данной системы уравнений
Систему уравнений: называют ____________ системы если каждое решение второй системы является решением первой системы
Следствием уравнения является уравнение: __________________
Следствием уравнения является уравнение: __________________
Следствием уравнения является уравнение: __________________
Следствием уравнения является уравнение: ______________
Уравнение (log2x)2 – 2log2x = 0 имеет ______________ корень(ня)
Уравнение (sinx — 1)(tgx — 1) = 0 равносильно совокупности систем _______________
Уравнение 1 — х2 = 2х имеет __________ корень(ня)
Уравнение 2log2x = 1 имеет ______________ корень(ня)
Уравнение 2х — 14 = х2 — 6х – 7 _________________ корерь(ня, ей)
Уравнение равносильно системе ____________
Уравнение равносильно системе ____________
Уравнение равносильно системе ____________
Уравнение равносильно системе ____________
Уравнение равносильно системе ____________
Уравнение равносильно системе: ___________
Уравнение lg(1 – x2) = lg 2x имеет __________ корень(ня)
Уравнение lg(1 – x2) = lg 2x имеет корень _________
Уравнение log2(х5 + х2 – 4) = log2(х5 + 4х – 7) _________________ корень(ня, ей)
Уравнение log2x2=1 имеет ______________ корня(ня)
Уравнение sin 6x = 0 имеет только _____________________ серию(и) решений
Уравнение sin 6x = 0 имеет только одну серию решений _______________,
Уравнение имеет корни, равные
Уравнение равносильно уравнению
Уравнение ________________ корень(ня, ей)
Уравнение единственный корень х1= ________________
Уравнение равносильно совокупности систем _______________
Уравнение имеет только _____________________ серию(и) решений
Уравнение имеет только одну серию решений _______________,
Уравнение _________________ корень(ня, ей)
Уравнение имеет ______________ корень(ня)
Уравнение имеет ______________ корень(ня)
Уравнение f(x) + j(x) = g(x) + j(x) равносильно системе ____________
Уравнение ___________ является следствием уравнения
Уравнение _____________ является следствием уравнения
Уравнение |f(x)| = g(x) равносильно совокупности систем _______________
Уравнение |x + 1| = 2х — 3 равносильно совокупности систем: ______________
Уравнение |x| = 2 равносильно совокупности уравнений __________
Уравнение |х2 — 2х — 2| = x — 1 равносильно совокупности двух систем _______________
Уравнение х2 — 2х = x – 2 имеет корни, равные
Уравнение х2 — 4х + 3 = 2х – 5 _______________ корень(ня, ей)
Уравнение х2 — 4х + 3 = 2х – 5 имеет два корня, равные: ______
Уравнение х2 – x — 6 = 0 имеет два корня: _________
Уравнение х2 + log2(x3 + x — l) = x + 6 + log2(х3 + x — 1) имеет единственный корень х1= __
Уравнение, ______________ системе, — уравнение такое, что каждое его решение является решением системы, а каждое решение системы является решением уравнения
Уравнение, ______________ совокупности нескольких систем — уравнение такое, что любое его решение является решением хотя бы одной из этих систем, а любое решение каждой из систем является решением уравнения
Уравнение: равносильно системе
Уравнение: равносильно системе ____________
Уравнение: f(x) = g(x) является следствием уравнения logaf(x) = logag(x) при ____________________
Уравнение: равносильно совокупности систем ______________, где М1 — область существования функции f1(x), а М2 — область существования функции f2(x)
Уравнение: имеет ______________ корень(я)
Уравнение: имеет корень, равный ____
Уравнение: _______________ решение(я, й)
Уравнение: равносильно совокупности систем _______________.
Уравнение: _______________
Уравнение: равносильно совокупности систем: _______________
Уравнение: , являющееся следствием уравнения имеет корень ___, посторонний для уравнения
Уравнение: ____________ является следствием уравнения log2(x — l) + log2(x + l) = 3
Уравнение: ______________ является следствием уравнения х2 + log2(x3 + x — l) = x + 6 + log2(х3 + x — 1)
Уравнения 2log2x = 1 и log2x2=1 являются равносильными на множестве всех ___________ чисел
Уравнения и х2 = 1 ____________________ чисел
Уравнения =1 и х2=1 являются равносильными на множестве всех ___________ чисел
Уравнения, _____________ на множестве М – два уравнения, такие, что любой корень первого уравнения, принадлежащий множеству М, является корнем второго уравнения, а любой корень второго уравнения, принадлежащий множеству М, является корнем первого уравнения
Уравнения, содержащие неизвестное под знаком корня, — это ______________ уравнения
Функции возрастающие и убывающие называются _________ монотонными функциями
Функция, ____________ на данном промежутке X — функция y = f(x), определенная на промежутке X, для которой для любой пары чисел х1 и х2 из этого промежутка из неравенства х1 f(x2)
Функция, _____________ на промежутке — функция, которая непрерывна в любой точке промежутка
Числовые _____________ — общее название для числовых отрезков, интервалов, полуинтервалов
Чтобы записать систему, обычно записывают друг под другом все входящие в нее уравнения и неравенства и объединяют их слева фигурной скобкой вида: ___

Равносильные уравнения, преобразование уравнений

Некоторые преобразования позволяют нам перейти от решаемого уравнения к равносильным, а также к уравнениям-следствиям, благодаря чему упрощается решение первоначального уравнения. В данном материале мы расскажем, что из себя представляют эти уравнения, сформулируем основные определения, проиллюстрируем их наглядными примерами и поясним, как именно осуществляется вычисление корней исходного уравнения по корням уравнения-следствия или равносильного уравнения.

Понятие равносильных уравнений

Равносильными называются такие уравнения, имеющие одни и те же корни, или же те, в которых корней нет.

Определения такого типа часто встречаются в различных учебниках. Приведем несколько примеров.

Уравнение f ( x ) = g ( x ) считается равносильным уравнению r ( x ) = s ( x ) , если у них одинаковые корни или у них обоих нет корней.

Уравнения с одинаковыми корнями считаются равносильными. Также ими считаются два уравнения, одинаково не имеющие корней.

Если уравнение f ( x ) = g ( x ) имеет то же множество корней, что и уравнение p ( x ) = h ( x ) , то они считаются равносильными по отношению друг к другу.

Когда мы говорим о совпадающем множестве корней, то имеем в виду, что если определенное число будет корнем одного уравнения, то оно подойдет в качестве решения и другому уравнению. Ни одно из уравнений, являющихся равносильными, не может иметь такого корня, который не подходит для другого.

Приведем несколько примеров таких уравнений.

Например, равносильными будут 4 · x = 8 , 2 · x = 4 и x = 2 , поскольку каждое из них имеет только один корень – двойку. Также равносильными будут x · 0 = 0 и 2 + x = x + 2 , поскольку их корнями могут быть любые числа, то есть множества их решений совпадают. Также равносильными будут уравнения x = x + 5 и x 4 = − 1 , каждое из которых не имеет ни одного решения.

Для наглядности рассмотрим несколько примеров неравносильных уравнений.

К примеру, таковыми будут x = 2 и x 2 = 4 , поскольку их корни отличаются. То же относится и к уравнениям x x = 1 и x 2 + 5 x 2 + 5 , потому что во втором решением может быть любое число, а во втором корнем не может быть 0 .

Определения, данные выше, подойдут и для уравнений с несколькими переменными, однако в том случае, когда мы говорим о двух, трех и более корнях, более уместно выражение «решение уравнения». Таким образом, подытожим: равносильные уравнения – это те уравнения, у которых одни и те же решения или их совсем нет.

Возьмем примеры уравнений, которые содержат несколько переменных и являются равносильными друг другу. Так, x 2 + y 2 + z 2 = 0 и 5 · x 2 + x 2 · y 4 · z 8 = 0 включают в себя по три переменных и имеют только одно решение, равное 0 , во всех трех случаях. А пара уравнений x + y = 5 и x · y = 1 равносильной по отношению друг к другу не будет, поскольку, например, значения 5 и 3 подойдут для первого, но не будут решением второго: при подстановке их в первое уравнение мы получим верное равенство, а во второе – неверное.

Понятие уравнений-следствий

Процитируем несколько примеров определений уравнений-следствий, взятых из учебных пособий.

Следствием уравнения f ( x ) = g ( x ) будет уравнение p ( x ) = h ( x ) при условии, что каждый корень первого уравнения будет в то же время корнем второго.

Равносильные уравнения. Равносильные преобразования уравнений

Равносильными называют уравнения, имеющие одни и те же корни. Равносильными считаются также уравнения, каждое из которых не имеет корней.

  • Уравнения \(x+2=7\) и \(2x+1=11\) равносильны, так как каждое из них имеет единственный корень – число \(5\).
  • Равносильны и уравнения \(x^2+1=0\) и \(2x^2+3=1\) — ни одно из них не имеет корней.
  • А вот уравнения \(x-6=0\) и \(x^2=36\) неравносильны, поскольку первое имеет только один корень \(6\), второе имеет два корня: \(6\) и \(-6\).

Равносильные преобразования уравнений — это такие преобразования, которые приводят нас к равносильным уравнениям.

Основные равносильные преобразования уравнений:

  1. Перенос слагаемых из одной части уравнения в другую со сменой знака слагаемого на противоположный.

Умножение или деление обеих частей уравнения на одно число или выражение не равное нулю.

Применение всех формул и свойств, которые есть в математике.

Возведение в нечетную степень обеих частей уравнения.

Извлечение корня нечетной степени из обеих частей уравнения.

Равносильные уравнения и уравнения следствия

Равносильные преобразования уравнений можно назвать «правильными» или «безошибочными» преобразованиями, потому что, сделав их, вы не нарушите математических законов. Почему тогда математики так их и не назвали: «правильные преобразования уравнений»? Потому что есть еще «полу-правильные» преобразования уравнений. В них уравнение при преобразовании приобретает дополнительные корни по ходу решения, но лишние корни мы при записи ответа не учитываем. Строгие математики их называют уравнениями следствиями:

Если каждый корень первого уравнения является корнем второго уравнения, но при этом у второго также есть корни не подходящие первому, то второе уравнение является следствием второго.

Пример (ОГЭ). Решите уравнение \(x^2-2x+\sqrt<2-x>=\sqrt<2-x>+3\)

Перенесем оба слагаемых из правой части в левую.

Взаимно уничтожим подобные слагаемые. Это и есть «полу-правильное преобразование», так как после него у уравнения становится два корня вместо изначального одного.

Это уравнение следствие из предыдущего. Найдем корни уравнения по теореме Виета .

Сверяем корни с ОДЗ и исключаем неподходящие.

\(↑\) не подходит под ОДЗ

Запишем ответ.

Переходить к уравнению следствию не запрещено, но при работе с ними нужно быть осторожным и не забывать про ОДЗ .

Пример. В каких пунктах применялись равносильные преобразования, а в каких был переход к уравнению следствию? Укажите какие виды равносильных преобразований применялись.

Решение:

В пункте a) применялось равносильное преобразование 1.

В пункте b) перешли к уравнению следствию, так как \(\sqrt\) «ушло», то ОДЗ расширилось;

В пункте с) тоже перешли к уравнению следствию, из-за того что умножили на знаменатель;

В пункте d) применялось равносильное преобразование: «Извлечения корня нечетной степени из обеих частей уравнения»;

В пункте e) умножили обе части уравнения на \(2\) т.е. равносильно преобразовали;

В пункте f) перешли от вида \(a^=a^\) к виду \(f(x) =g(x)\), что тоже является равносильным преобразованием.


источники:

http://zaochnik.com/spravochnik/matematika/systems/ravnosilnye-uravnenija-preobrazovanie-uravnenij/

http://cos-cos.ru/math/175/