Записать единое уравнение явлений переноса

4.2. Законы процессов переноса

Если газ выведен из состояния равновесия, то в нем возникают процессы, стремящиеся вернуть систему в равновесное состояние. Например, разные части системы имеют разные температуры или концентрации частиц. Соответственно, температуры или концентрации стремятся выровняться (за счет теплового движения молекул), что сопровождается передачей (переносом) тех или иных физических величин от одной части системы к другой. Такие процессы называются явлениями переноса. Эти явления имеют много общего и классифицируются по тому признаку, какая именно физическая характеристика «переносится» из одной части системы в другую.

Диффузия. Пусть в системе имеются молекулы, концентрация которых n(z) зависит от координаты z. Мысленно поместим в точке с координатой z квадратик площадью S, ортогональный оси z. В системе происходит процесс выравнивания концентрации n частиц, сопровождающийся их переносом в направлении убывания n. Эксперимент показал, что через площадь S за единицу времени проходит количество частиц

где D определяется свойствами системы и называется коэффициентом диффузии. Величина Ф (поток частиц — число частиц в единицу времени) имеет размерность

размерность концентрации частиц

и поэтому размерность коэффициента диффузии

Отрицательный знак в законе диффузии как раз и означает, что поток частиц направлен от больших значений концентрации к меньшим, то есть в направлении, противоположном производной dn/dz. Действительно, пусть n(z) — убывающая функция, то есть концентрация частиц падает с ростом z. Тогда производная dn/dz (градиент концентрации) отрицательна, а поток Ф получается положительным, то есть направлен в сторону увеличения z.

Если обе части уравнения (4.7) умножить на массу m0 диффундирующих молекул, то для потока массы М = m0Ф получим аналогичное уравнение

где r = т0n — масса диффундирующего вещества в единице объема, то есть его плотность. Связь (4.7) потока частиц с градиентом dn/dz концентрации называется первым законом Фика.

Первый закон Фика ничего не говорит о величине коэффициента диффузии, который должен в каждом конкретном случае определяться экспериментально. Поэтому этот закон носит эмпирический характер. Он применим не только для газов, но и для твердых и жидких тел. Следует отметить также, что перенос вещества в газах и жидкостях может осуществляться и механическим путем за счет конвекционных потоков (скажем, за счет ветра в атмосфере или течения в океане). Важно не путать диффузию, которая происходит из-за молекулярного движения, с конвекцией, возникающей вследствие воздействия внешних сил.

Заметим, что если система является смесью, то первый закон Фика записывается точно в такой же форме для каждого из компонентов смеси в отдельности, но коэффициенты диффузии, вообще говоря, различаются. Это значит, что в смеси, скажем, двух газов может случиться так, что концентрация частиц одного из компонентов уже выровнялась, а второго — еще нет.

Второй закон Фика позволяет найти зависимость концентрации диффундирующих частиц от времени. Для его вывода рассмотрим два параллельных друг другу одинаковых квадратика, расположенных в близких точках с координатами z и z + dz. Для определенности будем считать, что n(z) — убывающая функция (рис. 4.4).

Рис. 4.4. Иллюстрация явления диффузии (к выводу второго закона Фика)

Тогда через левую площадку за время dt входит Ф(z)dt частиц, а через правую выходит Ф(z + dz)dt частиц.

Увеличение числа частиц dN в пространстве между площадками за время dt равно разности числа входящих и выходящих частиц:

Разделив dN на объем Sdz зазора между квадратиками, получаем изменение концентрации частиц за время dt

Используя первый закон Фика, находим отсюда (здесь мы уже переходим к частным производным)

Обычно коэффициент диффузии не зависит от координат, и мы получаем уравнение, выражающее второй закон Фика:

Если ввести плотность потока частиц j = Ф/S (число частиц, пересекающих единичную площадь в единицу времени), то уравнение (4.8) можно записать в иной форме:

Это уравнение — один из примеров уравнения непрерывности, встречающегося во многих областях физики и выражающего в данном случае закон сохранения числа частиц. Его смысл: скорость изменения числа частиц в объеме равна разности потоков входящих и выходящих частиц (при условии, что внутри объема не происходит рождения или исчезновения частиц).

Вязкость. Рассмотрим следующий мысленный опыт. Пусть на поверхности жидкости плавает пластина, которую медленно тянут направо с силой FT (рис. 4.3).

Рис. 4.5. Сила внутреннего трения F, действующая на пластину, движущуюся со скоростью u0, по поверхности жидкости

Опыт показывает, что при установившемся движении пластина перемещается с постоянной скоростью u0. Пусть расстояние до неподвижного дна равно d, а площадь пластины равна S. Что мы можем сказать о течении жидкости?

Ясно, что кроме силы FT на пластину должно действовать что-то еще: иначе она двигалась бы равноускоренно. Это «что-то еще» может действовать только со стороны жидкости. Другими словами, на пластину со стороны жидкости действует сила F, подобная силе трения. Она направлена влево и по величине равна действующей силе FT. Каково происхождение этой силы? Прилегающий к пластине слой жидкости «прилипает» к ней и движется с той же скоростью u0. Аналогично слой жидкости, прилегающий ко дну, имеет нулевую скорость. Следовательно, в системе устанавливается некоторое распределение скоростей u(z), где z — расстояние от дна. В конечном итоге неподвижное дно через жидкость действует на пластину, порождая силу внутреннего трения, уже знакомую нам из механики жидкостей и газов.

В соответствии со сказанным, заведомо должны выполняться граничные условия u(0) = 0, u(d) = u0. Сила внутреннего трения возникает как раз вследствие этого распределения скоростей: вышележащий слой «трется» о нижележащий и тормозится им (соответственно, более быстрый слой стремится ускорить более медленный).

Опыт показывает, что сила внутреннего трения F связана со скоростью u0 соотношением (см. рис. 4.3)

Коэффициент h, имеющий размерность

называется коэффициентом динамической вязкости (внутреннего трения).

Чтобы найти распределение скоростей в этой системе, представим себе наблюдателя, находящегося на расстоянии z от дна и движущегося вместе с жидкостью со скоростью u(z). С точки зрения этого наблюдателя, его слой покоится, а пластина движется со скоростью u0 – u(z). Зависимость той же силы F от скорости должна теперь описываться аналогичной формулой с заменой

В результате получаем

Приравнивая выражения (4.11) и (4.12), находим скорость слоя как функцию расстояния от дна

Мы получили линейный закон распределения скоростей (рис. 4.6), удовлетворяющий нашим граничным условиям u(0) = 0, u(d) = u0.

Рис. 4.6 Линейное распределение скоростей в жидкости

Такое распределение скоростей связано с простотой рассмотренной системы. В других случаях течение имеет более сложный характер, но и тогда мы можем воспользоваться найденной закономерностью. Действительно, рассмотрим жидкость, в которой существует градиент скоростей по координате z. Относительная скорость слоев с координатами z и z + dz равна

Поскольку мы рассматриваем сколь угодно малые расстояния dz, то для малых площадей S течение можно считать плоским и описываемым прежними формулами. Тогда сила внутреннего трения между соседними слоями будет определяться уравнением (4.11), где вместо отношения u0/d стоит градиент скорости относительного движения слоев du/dz:

Такой закон действительно соответствует опытам по определению силы внутреннего трения между слоями жидкости или газа при ламинарном течении и был установлен Ньютоном.

Теплопроводность. Предположим теперь, что есть два источника тепла различной температуры Т1 и Т2. Представим их себе как широкие пластины, расположенные перпендикулярно оси z в точках с координатами z = 0 и z = d. Газ, заполняющий зазор между пластинами, передает тепловую энергию от горячего тела к более холодному. При этом в газе устанавливается некоторое распределение температур T(z), удовлетворяющее граничным условиям Т(0) = T1 и T(d) = Т2 (рис. 4.).

Рис. 4.7. Распределение температуры между двумя источниками

Поместим между источниками квадратик площадью S, параллельный пластинам. Опыт показывает, что за время dt через площадь S протекает количество теплоты dQ, причем

Постоянная k называется коэффициентом теплопроводности и имеет размерность

Соотношение (4.15) называется законом Фурье.

Отрицательный знак (как и в первом законе Фика) указывает, что поток тепла направлен в сторону понижения температуры, то есть против градиента температуры dT/dz. При этих условиях в равновесном состоянии в газе установится линейный закон изменения температуры. Действительно, через квадратик единичной площади, расположенный в точке z, в единицу времени втекает количество теплоты

Через такой же квадратик в точке z + dz в единицу времени вытекает теплота

Если температура между квадратиками не меняется (установилось равновесие), то эти потоки теплоты равны между собой, то есть

Из равенства нулю второй производной следует, что функция линейна:

Из граничных условий в концевых точках находим константы интегрирования:

В сущности, мы получили аналог закона распределения скоростей при рассмотрении вязкости жидкости: достаточно заменить

Это следствие стационарности, то есть того факта, что мы рассматривали установившееся течение или распределение температур. То же следует из второго закона Фика: для стационарной системы: производная по времени в левой части уравнения (4.9) равна нулю, откуда следует равенство нулю второй производной концентрации частиц по координате z, что эквивалентно линейности функции n(z).

Пример. Определим, какое количество тепловой энергии уносится в единицу времени через окно площадью S = 2 м 2 с расстоянием между стеклами d = 5 см, если в комнате поддерживается температура t1 = 20 °С, а на улице стоит мороз:
t2 = –20 °С.

Сразу заметим, что поскольку величина градуса по шкалам Цельсия и Кельвина одинакова, то разность температур

Коэффициент теплопроводности воздуха k = 0,025 Дж/(м·с·К). Для стекла этот коэффициент в 20 раз больше, так что его наличие можно не учитывать. К тому же толщина стекла много меньше промежутка между стеклами. Поэтому от мороза нас оберегает именно воздушная прослойка между стеклами. В соответствии со сказанным, в этом промежутке устанавливается линейное распределение температуры, так что производная dT/dz постоянна и равна

Поток тепловой энергии равен тогда

Расход тепловой энергии через одно окно за месяц

Решая эту задачу, мы неявно сделали сильное предположение, что температура внутреннего стекла совпадает с температурой в комнате, а наружного — с температурой окружающего воздуха. Из практики каждый знает, что это не так: на самом деле наружная поверхность стекла несколько теплее, а внутренняя — немного холоднее. В действительности градиент температур в промежутке между рамами может быть раза в два меньше, что соответственно уменьшает поток тепловой энергии наружу. Однако точное решение задачи выходит за рамки данного курса.

Нетрудно заметить то общее, что есть у всех обсуждавшихся явлений. Во все уравнения переноса входит градиент некоторой величины — концентрации частиц, скорости течения, температуры. Во всех случаях при условии стационарности устанавливается линейное распределение этой величины. Все это потому, что явления переноса имеют общее происхождение — молекулярное движение.

Явление переноса. Общее уравнение переноса

1.3 Явление переноса. Общее уравнение переноса

Группа явлений, обусловленных хаотическим движением молекул и приводящих при этом к передаче массы, кинетической энергии и импульса, называется явлением переноса.

К ним относят диффузию – перенос вещества, теплопроводимость – перенос кинетической энергии и внутреннее трение – перенос импульса.

Общее уравнение переноса, описывающее эти явления, можно получить на основе молекулярно-кинетической теории.

Пусть через площадку площадью «S» (рисунок) переносится некоторая физическая величина в результате хаотического движения молекул.

Похожие работы

. материалы хорошо описываются в рамках квантово-механической фононной Модели строения и функционирования клеточных мембран, что позволяет утверждать: “ФОНОН – КВАНТ биологической (клеточной) мембраны”. Модель пригодна для объяснения широкого круга наблюдаемых явлений. При этом наблюдаемые явления описываются в рамках единого понятийного аппарата и не требуют специфических допущений для описания .

. активность тиамина и некоторых его производных. За последние 20 лет наряду выяснением механизма основных реакций, в которых каталитическую роль играет ТДФ, стали накапливаться дан­ные о высокой биологической активности других некоферментных про­изводных тиамина. Отчетливо наметились два направления исследова­ний: возможное, участие различных фосфорных эфиров витамина в активном переносе .

. формами географической (территориально-механической) изоляции, известны и разные формы биологической изоляции, которые могут быть разбиты на три основные группы: эколого-этологическую, морфо-физиологическую и собственно генетическую. Биологическая изоляция приводит к уменьшению вероятности встречи особей разных полов в период размножения, снижению полового влечения и эффективности спаривания, к .

. и инозитолтрифосфат подвергаются химическим превращениям, требующим АТФ и ЦТФ и приводящим к восстановлению три-фосфоинозитида. Таким образом, цикл замыкается и уровень полифосфоинозитидов в мембране восстанавливается. 7. МИЕЛИН В ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЕ Мозг человека содержит 120 г миелина, что составляет одну треть его сухой массы. Миелин – уникальное образование, организация которого .

Линейное уравнение переноса

При классификации уравнений с частными производными (2.1) отмечалось, что уравнения первого порядка называются также уравнениями переноса. Это объясняется тем, что такие уравнения описывают процессы переноса частиц в средах, распространения возмущений и т.п.

В общем случае уравнения переноса могут иметь значительно более сложный вид (например, интегродифференциальное уравнение Больцмана в кинетической теории газов). Однако здесь мы ограничимся линейным уравнением с частными производными первого порядка. Его решение представляет интерес не только с практической точки зрения; в еще большей степени это уравнение полезно при разработке и исследовании разностных схем.

Будем считать, что искомая функция Uзависит от времени tи одной пространственной переменной х. Тогда линейное уравнение переноса может быть записано в виде

(2.23)

Здесь а — скорость переноса, которую будем считать постоянной и положительной. Это соответствует переносу (распространению возмущений) слева направо в положительном направлении оси х. Правая часть F(x, t) характеризует наличие поглощения (или, наоборот, источников) энергии, частиц и т.п. в зависимости от того, какой физический процесс описывается уравнением переноса.

Характеристики уравнения (2.23) определяются соотношениями х — at = С = const. При постоянном а они являются прямыми линиями, которые в данном случае (а > 0) наклонены вправо (рис. 2.5).

Рис. 2.5. Область решения

Расчетная область при решении уравнения (2.23) может быть как бесконечной, так и ограниченной. В первом случае, задавая начальное условие при t = 0:

(2.24)

получаем задачу Коши для полуплоскости На практикеобычно приходится решать уравнение переноса в некоторой ограниченной области (например, в прямоугольнике ; см. рис. 2.5). Начальное условие (2.24) в этом случае задается на отрезке l1; граничное условие нужно задать при х = 0, т.е. на отрезке l2, поскольку при а > 0 возмущения распространяются вправо. Это условие запишем в виде

(2.25)

Таким образом, задача состоит в решении уравнения (2.23) с начальным и граничным условиями (2.24) и (2.25) в ограниченной области G:

Убедиться в том, что данная задача поставлена правильно (корректно) можно, проанализировав решение уравнения (2.23), которое при F(x, t) = 0 имеет вид

(2.26)

где Н — произвольная дифференцируемая функция. В этом легко убедиться, подставляя (2.26) в уравнение (2.23). Решение (2.26) называется бегущей волной (со скоростью а). Это решение постоянно вдоль каждой характеристики: при х — at = С искомая функция U = Н(хat) = Н(С) постоянна. Таким образом, начальные и граничные условия переносятся вдоль характеристик, поэтому они должны задаваться на отрезках ll2 расчетной области G(см. рис. 2.5).

Можно также построить аналитическое решение задачи Коши для неоднородного уравнения (2.23). Заметим лишь, что решение этой задачи меняется вдоль характеристики, а не является постоянным.

Рассмотрим разностные схемы для решения задачи (2.23) — (2.25). Построим в области Gравномерную прямоугольную сетку с помощью прямых xi = ih (i =0,1. I) и . Вместо функций U(x,t), F(x,t), Ф(х) и будем рассматривать сеточные функции, значения которых в узлах (xi, tj) соответственно равны и . Для построения разностной схемы необходимо выбрать шаблон. Примем его в виде правого нижнего уголка(рис. 2.6). При этом входящие в уравнение (2.23) производные аппроксимируются конечно-разностными соотношениями с использованием односторонних разностей:

(2.27)

Рис. 2.6. Правый нижний уголок

Решая это разностное уравнение относительно единственного неизвестного значения на (j + 1)-ом слое, получаем следующую разностную схему:

(2.28)

Полученная схема явная, поскольку значения сеточной функции в каждом узле верхнего слоя выражаются явно с помощью соотношений (2.28) через ранее найденные ее значения на предыдущем слое.

Для начала счета по схеме (2.28), т.е. для вычисления сеточной функции на первом слое, необходимы ее значения на слое j= 0. Они определяются начальным условием (2.24), которое записываем для сеточной функции:

(2.29)

Граничное условие (2.25) также записывается в сеточном виде:

(2.30)

Таким образом, решение исходной дифференциальной задачи (2.23) — (2.25) сводится к решению разностной задачи (2.28) – (2.30). Найденные значения сеточной функции принимаются в качестве значений искомой функции и в узлах сетки.

Алгоритм решения исходной задачи (2.23) — (2.25) с применением рассмотренной разностной схемы достаточно прост. На рис. 2.7 представлена его структурограмма. В соответствии с этим алгоритмом в памяти компьютера хранится весь двумерный массив , и он целиком выводится на печать по окончании счета. С целью экономии памяти (и если эти результаты не понадобятся для дальнейшей обработки) можно воспользоваться тем, что схема двухслойная, и хранить лишь значения сеточной функции на двух соседних слоях . Рекомендуем читателю соответственным образом модифицировать представленный алгоритм и построить новую структурограмму.

Рис. 2.7. Алгоритм решения линейного уравнения переноса

Укажем теперь некоторые свойства данной разностной схемы. Она аппроксимирует исходную задачу с первым порядком, т.е. невязка имеет порядок O(h+τ). Схема условно устойчива; условие устойчивости имеет вид

(2.31)

Эти свойства схемы установлены в предположении, что решение U(x, t), начальное и граничное значения Ф(х) и дважды непрерывно дифференцируемы, а правая часть F(x, t) имеет непрерывные первые производные.

Поскольку схема (2.28) устойчива и аппроксимирует исходную задачу, то в соответствии с приведенной в разд. 2.1 теоремой сеточное решение сходится к точному с первым порядком при . Отметим, что при а 0 эта схема не сходится.

Граничное условие для уравнения переноса (2.23) при а 0). Такая аппроксимация называется противопотоковой и широко используется при численном решении уравнений переноса.

При построении явной разностной схемы (2.28) производная ¶U/х аппроксимировалась с помощью значений сеточной функции на j-ом слое; в результате получилось разностное уравнение (2.27), в котором использовано значение сеточной функции лишь в одном узле верхнего слоя. Если производную¶U/х аппроксимировать на (j + 1)-ом слое (шаблон изображен на рис. 2.9), то получится неявная схема. Разностное уравнение примет вид

(2.34)

Рис. 2.9. Правый верхний уголок

Разрешая это уравнение относительно , приходим к следующей разностной схеме:

(2.35)

Это двухслойная трехточечная схема первого порядка точности. Она безусловно устойчива (при а > 0). Хотя формально данная разностная схема строилась как неявная, практическая организация счета по ней проводится так же, как и для явных схем.

Действительно, в правую часть уравнения (2.35) входит значение на (j+1)-ом слое, которое при вычислении уже найдено. При расчете значение берется из граничного условия (2.30). По объему вычислений и логике программы (см. рис. 2.7) схема (2.35) аналогична схеме (2.28), однако безусловная устойчивость делает ее более удобной, поскольку исключается ограничение на величину шага.

Схему (2.28) можно применять для решения задачи Коши в неограниченной области, поскольку граничное условие (2.30) в этой схеме можно не использовать.

Рис. 2.10. Прямоугольник

Рассмотрим еще одну разностную схему, которую построим на симметричном прямоугольном шаблоне (рис. 2.10). Производная по tздесь аппроксимируется в виде полусуммы отношений односторонних конечных разностей в (i — 1)-м и i-м узлах, а производная по x — в виде полусуммы конечно-разностных соотношений на jми (j + 1)-ом слоях. Правую часть вычисляют в центре ячейки, хотя возможны и другие способы ее вычисления (например, в виде некоторой комбинации ее значений в узлах). В результате указанных аппроксимаций получим разностное уравнение в виде

(2.36)

Данная двухслойная четырехточечная схема также формально построена как неявная. Однако из (2.36) можно выразить неизвестное значение через остальные, которые предполагаются известными:

(2.37)

Построенная схема имеет второй порядок точности. Она устойчива на достаточно гладких решениях.

Схема (2.37) получена для случая а > 0. Аналогичную ей схему при а 0, а2 > 0 — скорости переноса вдоль осей х, у, (2.39) — начальное условие при t= 0; (2.40) — граничные условия при х =0, y= 0.

В трехмерной области (х, у, t) построим разностную сетку, ячейки которой имеют форму прямоугольного параллелепипеда. Для этого проведем координатные плоскости через точки деления осей х, у, t:

Значение сеточной функции в узле (i, j, k), с помощью которой аппроксимируются значения , обозначим через . Построим безусловно устойчивую разностную схему первого порядка точности, аналогичную схеме (2.35). Шаблон изображен на рис. 2.11, где выделена одна ячейка разностной сетки. Сплошными линиями соединены узлы шаблона. Нижний слой (нижнее основание параллелепипеда) имеет номер k, верхний k+ 1.

Рис. 2.11. Шаблон для двумерного уравнения

По аналогии с (2.34) запишем разностное уравнение, аппроксимирующее дифференциальное уравнение (2.38):

Разрешим это уравнение относительно значения сеточной функции в узле :

(2.41)

Вычислительный алгоритм этой схемы аналогичен алгоритму одномерной схемы (2.35). Здесь также счет производится по слоям k= 1,2. К. При k= 0 используется начальное условие (2.39), которое нужно переписать в разностном виде:

(2.42)

На каждом слое последовательно вычисляют значения сеточной функции в узлах. При этом последовательность перехода от узла к узлу может быть различной: двигаются параллельно либо оси х, либо оси у. Во втором случае последовательность вычисляемых значений следующая:

На рис. 2.12 показана нумерация узлов, соответствующая данной последовательности вычислений на каждом временном слое. Точками отмечены расчетные узлы сетки, крестиками — граничные узлы, в которых значения сеточной функции задаются граничными условиями (2.40). Эти условия обходимо записать в сеточном виде:

. (2.43)

Рис. 2.12. Последовательность вычислений

При этом значения в угловой точке (х = 0, у = 0) в данной разностной схеме не используются.

Алгоритм решения смешанной задачи (2.38 – 2.40) для двумерного уравнения переноса по схеме (2.41) с учетом сеточных начального и граничных условий (2.42) и (2.43) представлен на рис. 2.13. При этом некоторые блоки (вычисление начальных значений uij, значений на границе пересылка ) даны схематически, хотя каждый из них представляет циклический алгоритм.

Рис. 2.13. Алгоритм решения двумерного уравнения переноса

В данном алгоритме предусмотрено хранение в памяти машины не полного трехмерного массива искомых значений , а лишь значений на двух слоях: — нижний слой, — верхний слой (искомые значения). Введен счетчик выдачи l, решение выдается через каждые Lслоев; при L = 1 происходит выдача результатов на каждом слое. Блок «Вычисление » вычисляет искомое значение по формуле, которая в принятых в структурограмме обозначениях имеет вид


источники:

http://kazedu.com/referat/195976/2

http://3ys.ru/metody-resheniya-differentsialnykh-uravnenij/linejnoe-uravnenie-perenosa.html