Записать уравнение кривой в неявном виде

Параметрическое задание кривой

Параметрическое задание кривой

  • Кривая параметрическая Н°1.Подход к делу problem. So до сих пор мы рассматривали только 2 вида назначений кривых: уравнение v = f (x) (явная задача) или уравнение F (x, y)= O (неявная задача)).Однако теоретическая механика очень естественно приводит к различным видам линий assignments. In дело в том, что

установка движения точки-это средство нахождения положения (то есть координат) любого момента времени t. Чтобы полностью определить движение точки, определите линию, на которой будет находиться точка move. So, в этом примере линии даны с использованием

So например, эквационный х = 2Т г = 3Т-2(1) Людмила Фирмаль

2 равенств (I).Конечно, очень легко получить более знакомые задачи в той же линии. Именно так. Для любого момента x 3x /будет t = — q, t y =-2. Это соединение X и y обеспечивает явное определение линии*).Видно, что эта задача получается путем исключения времени t из Формулы (1). В рассматриваемом

примере, тот факт, что переменная T показывает время не играет никакой роли. Например, предположим, что следующие X и y зависят от вспомогательных переменных: х = Т-ФЛ, г = т \ Изменение его даст вам различные точки(.x, комбинация которых состоит из нескольких линий. значение t обозначается равенством t = x-1 с соответствующим значением x, поэтому y =(x-I) 1 для

  • любой точки линии, и я получил явную задачу линии. Из этого видно, что вы обрабатываете 1 пару болтов. Чтобы суммировать вышесказанное, пара уравнений Где t-вспомогательная переменная, определяющая lnnnu. Способ определения этой линии называется параметрическим, а переменная t называется

параметром. за исключением t, вы получаете нормальное (явное или неявное) уравнение для той же строки. Замечание. Если функция Людмила Фирмаль

и последовательным в интервале[i, b]), является непрерывной кривой, поскольку она также может Параметрические уравнения для окружностей и эллипсов. Рассмотрим окружность с радиусом R, центрированную вокруг начала координат

(рис.181).Положение любой точки M в этой окружности полностью определяется установкой угла f, который образуется осью Ox и радиусом OM. It естественно выразить координаты x и y точки M под этим углом. Из рисунков это сразу понятно (2) х = р COS в ТТ г = РС \ НТ. Эти уравнения (*) являются параметрическими

уравнениями окружности. Параметр T может быть изменен с-oo на — | — oo, но если вы хотите получить каждую точку круга по 1 разу, достаточно пройти t через зазор. Однако, это более удобно для обработки закрытых пробелов. Так, т, как правило,

изменяется в пределах 0 ^ / ^ 2ir, но точка с получает в 2 раза. T= 0 и в = 2ir. Чтобы получить нормальное уравнение окружности, необходимо исключить параметр T из (2).Это проще всего, если вы возьмете уравнение (2) на 2 квадрата и добавите результат. Очевидно, это приводит к известному уравнению Найти

параметрическое уравнение эллипса (3) Полезно помнить, что он получается из круга * * + > ■ = A (4)рисунок 181. Имеют диаметр с большой осью эллипса, иногда используют сжатие、 То есть любая точка M в эллипсе(3) берется из точки N в окружности (4). Б Ордината точки Н В соответствии с вышеизложенным

параметрическое уравнение окружности(4) имеет вид x = acos/, ^ = asin/.Но тогда понятно, что параметрическое уравнение (3) эллипса получается умножением. форма ординаты y имеет вид) (5) * = acosf, г = БС \ НТ. Чтобы получить все точки овала, достаточно

изменить Т выпускного вечера. Жуткий 0 ^ t ^кроме того, каждая точка эллипса, кроме точки (a, 0), получается только 1 раз, а точки(a, 0) — 2 раза (t = 0 и t = 2k).Если мы разделим первое уравнение (5) на a, а затем разделим 2-е уравнение на b, то полученное уравнение будет добавлено на 2 и станет каноническим уравнением эллипса(3).

Сравнение параметрических уравнений окружности и эллипса дает удобный метод построения любого числа точек в эллипсе. То есть, пара уравнений х-acoet, у = грех Т(6) U определяет окружность с радиусом A вокруг начала координат и пару уравнений х = б сое т, у = B грех Т(7) — Окружность b с тем же центром и радиусом; чтобы получить точку (l, y), как показывает уравнение (5), p / 82.Если

вы лежите на овале, вам нужно найти x Используйте первое выражение(6) и 2-е выражение (7) с y. но эти xn-y легко найти графически, так как в формулах (6) и (7) параметром T является угол наклона радиус-вектора точки относительно оси Ox. So, чтобы составить точку M (q, y) эллипса (5), нарисуйте окружность (6) и (7)

и нарисуйте луч на оси Ox под углом t от начала координат. Найдите точки A и B пересечения этого луча и ранее упомянутой окружности и проведите через них прямую линию, параллельную оси, вы получите точку M (см. Рисунок 182).П°3.Циклоида * важные

кривые-давайте познакомимся с циклоидой. Это также хороший пример параметрического определения линии. Определение циклоида представляет собой линию, которая представлена точкой окружности, которая катится без скольжения или вращения Из этого определения сразу видно, что циклоида состоит из ряда дуг, как

показано на рисунке 1. 183, высота этих арок равна 2R. R-радиус окружности. Ниже расстояние между соседними точками разворотаAB, BC,…равно 2π/?Это значение по умолчанию. Найдите параметрические уравнения циклоиды. В качестве оси Ox возьмите прямую линию, по которой катится круг, и для начала координат

возьмите положение точки M, которая представляет собой циклоиду острия в этой точке. Эта точка находится на оси Ox. Нарисуйте этот момент как первый момент, вращающийся круг в первый момент, а затем второй. t представляет собой угол, образованный в момент t радиусом вращающейся окружности, направленной

к точке A окружности, которая касается точки I и оси Ox, представляющей циклоиду. (Рисунок 184) радиус CXM и u \° С / а возьмем этот угол т. 184. Попробуйте параметр 8a Через него отрегулируйте точки x и y м-циклоиды. Что касается координат Y, то это довольно просто. г => ВМ = объявление = ОБК-CjZ)= /? — R cos t.

(8) Чтобы найти абсциссу X, нужно рассмотреть эквивалентность отрезка OA и дуги AM. OA = AM. (9 )) При таком равенстве окружность не будет скользить или вращаться. Следующий метод проверки эквивалентности очень очевиден(9): представьте себе катящийся круг, выполненный в виде деревянного кольца. Накройте этот обруч лентой, которая не растягивается, прибив ее правый край гвоздем

к точке O оси Ox, а левый край-к обручу. При вращении обруча лента начинает растекаться по оси Ox, и в момент t отсечение оси OA закрывается той частью ленты, которая упала вниз. С дугой AM обруч. Это*) доказывает(9). еще проще: t-значение угла AC% M, так как это Радиан、 AM = Rt Так… x = OB = OA-BA = AM-MD = Rt-Rsint (10) Если

сравнить (8)и(10), то получим параметрическое уравнение циклоиды х = р(т-Син т), г = р (- стоимость). Параметр Т может изменяться от-ОО до-Е-ОО. Пересечение начала координат и ближайших к нему справа циклоид соответствует значению Ox = t * 2.Это происходит потому, что круг качения приобретается после 1 rotation. In в этом случае

t будет n; = 2nR. In кроме того, из (11) видно, что координаты (π/,, 2/) находятся в высшей точке соответствующего cycloid. To будьте осторожны невозможно представить Y в качестве одной из основных функций Икс. И от x до y возможно| f = Arccos ^ l, но результат Формула очень трудоемкая. Параметрическое уравнение

проще. в N°4.Эвольвента circle. In в теории зацепления используется кривая, называемая эвольвентой окружности. Эвольвента окружности определения-это линия, которая описывается точкой нити и расстегивается от этой окружности, пока она прочно растянута. Предполагается, что нить неэластична и предварительно обмотана вокруг вышеуказанных кругов. Найти параметрическое

уравнение для эвольвенты circle. To сделайте это, поместите начало координат в центр круга и нарисуйте ось Ox Ноль ноль В тот момент, когда нить еще полностью обмотана вокруг окружности, точка окружности, в которой расположена точка, описывающая эвольвенту. Рисунок 185 эта точка обозначается A. 185 показывает положение потока виртуальной машины в некоторой точке в time. So, здесь B-

точка, в которой нить исчезает из окружности, а M-точка, в которой она описывает эвольвенту. Радиус окружности? Угол наклона оси Ox и Луча OB представлен через t. поскольку нить не является растяжимой、 Отрезок VM равен дуге AB окружности. То есть, BM = RT. обратите внимание, что нить остается прочно натянутой, поэтому она спускается по касательной от окружности. Таким образом,

нить VM перпендикулярна радиусу органического вещества. Поэтому углы AOB и MBD равны углам, где каждая сторона перпендикулярна друг другу. Следовательно,£МБД = T, и из треугольника МВС См = РТ грех ЦБ = стоимость РТ. Теперь вы можете легко найти X и y координаты точки м. Другими словами、 х = ое = ОД + де = ОД-ТСМ = стоимости Р + РТ грех г = ВС = ДК = ДБ-КБ = Р грех Т-РТ стоимость. Рисунок 185.Наконец. х = /?(потому что * — Ф — * грех/),; г = р (т Син-/ Кос Т), (’ Где: 0 f > = » K0(13) В точке M (x, y), соответствующей значению параметра T. To сделайте это, дайте

t приращение At и в результате получите ту же самую точку кривой AfCtf-J-A * » Y + AC) (13).Угловой коэффициент Т * Секущий MN равен или равен Важно отметить, что производная, фигурирующая в (15) , должна быть рассчитана для величины t, определяющей контакт M. Угловой коэффициент m интересующего тангенса является

пределом формулы (14) для N — + M, то есть, но так как D * — > 0 Вы будете Работать ДД: (15 )) Так… Образцы. Нарисуйте касательную к кривой + г = Тл-7т(16) Очки*)А!(2). Решение. Координаты точки M определяются из(16). xi = 17, y%=2.In сложение, x \ = bP—4/, y \ = 4P-7.So, t = 2 — Это X / = 20, yt = 25, угловой коэффициент Желаемый тангенс. Форма искомого уравнения имеет вид y-2 = 4 (l-17> Замечание.

Приведенная выше строка g:=?( * ), Y =φ (f), функция равна (t), φ (/).Если эти функции не только непрерывны, но и имеют непрерывные производные от y’0, то, как показывает уравнение (15), кривая имеет определенную касательную в каждой точке, и ее положение непрерывно изменяется с изменением контакта.

Кроме того, указанные касательные никогда не будут параллельны оси Oy. Учитывая, что координаты x и y полностью равны, линии x =

.Где f (/j u f ( / ) имеет непрерывную производную、 а В частности, под это определение подпадает линия y = f ( * ), где f (x) имеет непрерывную производную. Где роль параметра T-абсцисса ш=■»+*?> ми- Теперь зададим следующие общие вопросы: пусть

x и y зависят от вспомогательных переменных t, как показано в (13). в первом выражении (13) обозначим t из x, а затем присвоим его 2-му выражению, вы увидите, что y является функцией x, то есть y = f(x).Попробуйте найти производную этой функции. Для этого достаточно вспомнить, что интересующей нас производной является только угловой коэффициент касательной прямой y = / ( * ),

а ее параметрическим уравнением является уравнение (13).Таким образом, она задается формулой(15). Чтобы правильно понять это важное выражение, следует помнить, что точка дифференцирования t справа от (17) является значением параметра, и согласно формуле x = y (t) она соответствует точке дифференцирования x, где Y’x находится. Соотношения(17) легко получить с помощью чисто формальных

вычислений. dypy / ДТ Вау, х]’ Затем попробуйте найти 2-ю производную yx той же функции y = f (x).Это легко сделать, используя формулу (17).То есть он временно представляет y’X с Z. А затем… ** ух-з» (17) Значение (18) Однако, поскольку Z = yx = — m、 / ГМ-ГМ Узнайте, наконец, из (18)и (19) Образцы. Установите вогнутое направление

кривой х =(* + 3Т + л> г = 2Т * — (21) В точке Af (l). Решение. Из (21), x’f = 2t + 3, x? = 2,г \ = г \ г! = 12 /.Итак, если t = 1, то это выглядит так:= jc / = 2, y ’ 0, кривая точки M (21) направлена вогнутой поверхностью вверх.

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

VMath

Инструменты сайта

Основное

Навигация

Информация

Действия

Содержание

Соприкасающаяся окружность. Эволюта, эвольвента

Разбор ДЗ

2. Найти кривизну и кручение кривой, заданной в неявном виде: $-x^2+y^2+z^2=1$, $-x^2+2y-z=0$ в точке $M(1,\,1,\,1)$.

Ответ: $k=\displaystyle\frac<\sqrt<6>><6>$, $\varkappa=1$.

3. Доказать, что кривая $x=1+2t+t^2, y=2-5t+t^2, z=1+t^2$

— плоская. Найти уравнение плоскости, в которой лежит эта кривая.

Ответ: $\varkappa=0$, $5x+2y-7z-2=0$.

Краткие теоретические сведения

Соприкосновение $k$-того порядка

Две кривые $$ \gamma_1: \vec_1=\vec_1(t)\,\, \mbox <и>\,\, \gamma_2: \vec_2=\vec_2(t) $$ имеют в общей точке $M_0$ соприкосновение (касание) $k$-того порядка, если в этой точке: \begin \frac_1>

=\frac_2>
, \ldots, \frac_1>=\frac_2>,\, \frac\vec_1>\neq\frac\vec_2>. \end

Для неявно заданных кривых — см. формулы в Феденко.

Касательная кривой имеет в точке касания имеет соприкосновение первого порядка.

Соприкасающаяся окружность плоской кривой

Пусть $\gamma$ — плоская кривая, $M_0 (t=t_0)$ — точка на ней.

Окружность, проходящая через точку $M_0$, называется соприкасающейся окружностью кривой $\gamma$ в точке $M_0$, если кривая в этой точке с окружностью имеет соприкосновение второго порядка (не ниже второго порядка).

Центр соприкасающейся окружности называют центром кривизны кривой в заданной точке.

Центр окружности лежит на нормали к кривой. Радиус окружности (радиус кривизны) есть величина, обратная кривизне этой кривой в заданной точке $M_0$: $$ R=1/k(t_0).$$

Эволюта и эвольвента

Эволютой плоской кривой называется огибающая ее нормалей.

Эволюта это геометрическое место центров кривизны плоской кривой.

Эвольвентой плоской кривой $\gamma$ называется такая кривая $\Gamma$ по отношению к которой $\gamma$ является эволютой.

Решение задач

Задача 1 (Феденко № 179)

Докажите, что линии \begin y_1=\mbox\,x, \,\, y_2=x^4-\frac16x^3+x. \end имеют в начале координат касание третьего порядка

Решение задачи 1

Задача 2 (Феденко №369)

Напишите уравнение соприкасающейся окружности линии $y=\mbox\,x$ в точке $A\left(\frac<\pi><2>; 1\right)$.

Решение задачи 2

Радиус соприкасающейся плоскости $R=\displaystyle\frac<1>$. Найдем кривизну для заданной кривой: \begin k = \displaystyle\frac<|y''|><\left(1+(y')^2\right)^<3/2>>=\frac<\mbox\,x><(1+\mbox^2\,x)^<3/2>>. \end \begin k\left(\frac<\pi><2>\right)=1 \,\, \Rightarrow \,\, R=1. \end Учитывая, что окружность касается синусоиды в точке $A\left(\displaystyle\frac<\pi><2>; 1\right)$, радиус окружности равен $1$ и центр окружности лежит на нормали, проведенной в точке касания, получаем следующее уравнение: \begin \left(x-\displaystyle\frac<\pi><2>\right)^2+y^2=1. \end

Задача 3 (Феденко №391)

Составьте уравнения и начертите эволюту кривой \begin x=a\left(\mbox\,\mbox\,\left(\displaystyle\frac<2>\right)+\mbox\,t\right), \,\, y = a\,\mbox\,t. \end

Решение задачи 3

Задача 4 (Феденко №397)

Составьте уравнения эвольвент окружности $x^2+y^2=a^2$ и сделайте рисунок.

Решение задачи 4

Запишем параметрическое уравнение окружности: \begin x=a\,\mbox\,t, \,\, y=a\,\mbox\,t. \end

Лекция Пространственные кривые. Задание линии в пространстве. Касательная кривой. длина кривой. Натуральный параметр кривой

(лекции №3, 4, 5,практические занятия №2, 3, контр. работа 20 мин.)

1)Понятие кривой в пространстве. Параметрическое задание кривой.

2)Уравнения касательной в случае параметрического задания кривой и в случае задания кривой, как пересечения двух поверхностей.

3)Длина дуги кривой. Натуральный параметр кривой.

4)Определение 2.1 (Круг, радиус и центр кривизны, кривизна)

5)Определение 2.2 (главная нормаль и формула для её нахождения).

6)Определение 2.3 (бинормаль и формула для её нахождения).

7)Определение 2.4 (плоскостей сопровождающего трёхгранника).

8)Формулы Френе. Кручение.

9)Определение 2.5 (эволюты). Уравнение эволюты.

10)Определение 2.6 (эвольвенты).

2.1 ЗАДАНИЕ ЛИНИИ В ПРОСТРАНСТВЕ.

Под кривой в пространстве будем понимать множествоГточек в пространстве, заданное, как непрерывный образ некоторого промежутка числовой оси.

Кривую можно задать параметрически:

(2.1)

или как годограф вектор-функции , .

2.2 КАСАТЕЛЬНАЯ КРИВОЙ.

Кривая называется дифференцируемой, непрерывно дифференцируемой, дважды дифференцируемой и т.д., если соответственно координатные функции в формуле (2.1) дифференцируемы, непрерывно дифференцируемы, дважды дифференцируемы и т.д.

ПустьГ– дифференцируемая кривая, заданная как годограф вектор-функции ; и Тогда прямая, являющаяся касательной к годографу вектор – функции в конце радиус – вектора , называется касательной к кривойГ.Поскольку по геометрическому смыслу является направляющим вектором касательной, уравнения касательной в точкеМ00,y0,z0)можно записать в виде:

(2.2)

В случае задания кривой уравнениями

x=x,y=f(x),

(здесь роль параметра играет переменнаях), уравнения касательной имеют вид:

(2.3)

Составим уравнение касательной к кривой, заданной, как пересечение двух поверхностей, заданных уравнениями в неявной форме

Дифференцируя эти тождества, получим

Отсюда видно, что вектор касательной перпендикулярен каждому из векторов , т.е. коллинеарен их векторному произведению

(2.5)

Если на кривой указать положительное направление, соответствующее возрастанию параметраt,то вектор называют касательным вектором ориентированной кривой.

Углом между ориентированными кривыми, пересекающимися в некоторой точке, называется угол между их касательными в этой точке.

Пример 2.1Составить уравнения касательной к винтовой линии: в произвольной точкеtи для .

Решение. Так как то уравнение касательной в произвольной точке согласно (2.2) будет иметь вид

.

В частности при :

Пример 2.2Составить уравнения касательной к кривой Вивиани:x 2 +y 2 +z 2 =R 2 ,x 2 +y 2 =Rxв точкеМ0(R/2,R/2, ).

Решение: Кривая Вивиани является линией пересечения поверхностей сферы с центром в начале координат и кругового цилиндра с центром (образующей), смещенным вдоль оси (в данном случае)Охна величину, равную радиусу цилиндра. Диаметр цилиндра равен радиусу сферы.

Запишем уравнения поверхностей в неявном виде

x 2 +y 2 +z 2 R 2 =0,

x 2 +y 2 Rх=0.

Тогда и согласно (2.2) уравнения касательной в произвольной точке линии будут иметь вид

или

В точкеМ0(R/2,R/2, )уравнение касательной:

2.3ДЛИНА КРИВОЙ. НАТУРАЛЬНЫЙ ПАРАМЕТР КИВОЙ.

Рассмотрим дугу непрерывно дифференцируемой кривой

Г: x=x(t), y=y(t), z=z(t), .

В разделе «Определённый интеграл» мы получили формулу для нахождения длины дуги кривой:

(2.6)

Если в качестве параметра выбрана координатах,и криваязадана уравнениями:x=x,y=y(x),z=z(x), ,то:

.

При переменном верхнем пределе длина дуги будет переменной величиной:

,отсюда:

.(2.7)

Если параметромtкривой является переменная длина дугиs, то координаты точки М кривой будут зависеть от длины дугиs=АМ:x=x(s),y=y(s),z=z(s)(естественная параметризация).Тогда в формуле (2.7) и, следовательно, , т.е. вектор будет единичным вектором касательной к кривой.

Точка(x(t0),y(t0),z(t0))кривой называется особой, если , и неособой, если .

Для всякой непрерывно дифференцируемой кривой без особых точек существует ее представление , в котором за параметрsвзята переменная длина дуги этой кривой, т.е. натуральнаяпараметризация.

Пример 2.3Найти длину дугиs(t)винтовой линии

x=acost,y=asint,z=bt, .(2.7)

Решение: Касательный вектор винтовой линии равен . Тогда

Пример 2.4Записать натуральную параметризацию винтовой линии.

Решение: Длина дуги линии .Отсюда Подставляяtв выраженияx(t),y(t),z(t),получим уравнение винтовой линии в естественной (натуральной) параметризации:

где


источники:

http://vmath.ru/vf5/diffgeom/seminar4

http://greleon.ru/vishmath/lekcii/182-lekciya-prostranstvennye-krivye-zadanie-linii-v-prostranstve-kasatelnaya-krivoy-dlina-krivoy-naturalnyy-parametr-krivoy.html