Записать уравнение реакций разложения азотной кислоты

Азотная кислота: получение и химические свойства

Строение молекулы и физические свойства

Азотная кислота HNO3 – это сильная одноосновная кислота-гидроксид. При обычных условиях бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C ( при нормальном атмосферном давлении). Азотная кислота смешивается с водой во всех соотношениях. На свету частично разлагается.

Валентность азота в азотной кислоте равна IV, так как валентность V у азота отсутствует. При этом степень окисления атома азота равна +5. Так происходит потому, что атом азота образует 3 обменные связи и одну донорно-акцепторную, является донором электронной пары.

Поэтому строение молекулы азотной кислоты можно описать резонансными структурами:

Обозначим дополнительные связи между азотом и кислородом пунктиром. Этот пунктир по сути обозначает делокализованные электроны. Получается формула:

Способы получения

В лаборатории азотную кислоту можно получить разными способами:

1. Азотная кислота образуется при действии концентрированной серной кислоты на твердые нитраты металлов. При этом менее летучая серная кислота вытесняет более летучую азотную.

Например , концентрированная серная кислота вытесняет азотную из кристаллического нитрата калия:

2. В промышленности азотную кислоту получают из аммиака . Процесс осуществляется постадийно.

1 стадия. Каталитическое окисление аммиака.

2 стадия. Окисление оксида азота (II) до оксида азота (IV) кислородом воздуха.

3 стадия. Поглощение оксида азота (IV) водой в присутствии избытка кислорода.

Химические свойства

Азотная кислота – это сильная кислота . За счет азота со степенью окисления +5 азотная кислота проявляет сильные окислительные свойства .

1. Азотная кислота практически полностью диссоциирует в водном растворе.

2. Азотная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами и амфотерными гидроксидами.

Например , азотная кислота взаимодействует с оксидом меди (II):

Еще пример : азотная кислота реагирует с гидроксидом натрия:

3. Азотная кислота вытесняет более слабые кислоты из их солей (карбонатов, сульфидов, сульфитов).

Например , азотная кислота взаимодействует с карбонатом натрия:

4. Азотная кислота частично разлагается при кипении или под действием света:

5. Азотная кислота активно взаимодействует с металлами. При этом никогда не выделяется водород! При взаимодействии азотной кислоты с металлами окислителем всегда выступает азот +5. Азот в степени окисления +5 может восстанавливаться до степеней окисления -3, 0, +1, +2 или +4 в зависимости от концентрации кислоты и активности металла.

металл + HNO3 → нитрат металла + вода + газ (или соль аммония)

С алюминием, хромом и железом на холоду концентрированная HNO3 не реагирует – кислота «пассивирует» металлы, т.к. на их поверхности образуется пленка оксидов, непроницаемая для концентрированной азотной кислоты. При нагревании реакция идет. При этом азот восстанавливается до степени окисления +4:

Золото и платина не реагируют с азотной кислотой, но растворяются в «царской водке» – смеси концентрированных азотной и соляной кислот в соотношении 1 : 3 (по объему):

HNO3 + 3HCl + Au → AuCl3 + NO + 2H2O

Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (IV), азот восстанавливается минимально:

С активными металлами (щелочными и щелочноземельными) концентрированная азотная кислота реагирует с образованием оксида азота (I):

Разбавленная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (II).

С активными металлами (щелочными и щелочноземельными), а также оловом и железом разбавленная азотная кислота реагирует с образованием молекулярного азота:

При взаимодействии кальция и магния с азотной кислотой любой концентрации (кроме очень разбавленной) образуется оксид азота (I):

Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:

Таблица . Взаимодействие азотной кислоты с металлами.

Азотная кислота
КонцентрированнаяРазбавленная
с Fe, Al, Crс неактивными металлами и металлами средней активности (после Al)с щелочными и щелочноземельными металлами с неактивными металлами и металлами средней активности (после Al)с металлами до Al в ряду активности, Sn, Fe
пассивация при низкой Тобразуется NO2образуется N2O образуется NO образуется N2

6. Азотная кислота окисляет и неметаллы (кроме кислорода, водорода, хлора, фтора и некоторых других). При взаимодействии с неметаллами HNO3 обычно восстанавливается до NO или NO2, неметаллы окисляются до соответствующих кислот, либо оксидов (если кислота неустойчива).

Например , азотная кислота окисляет серу, фосфор, углерод, йод:

Безводная азотная кислота – сильный окислитель. Поэтому она легко взаимодействует с красным и белым фосфором . Реакция с белым фосфором протекает очень бурно. Иногда она сопровождается взрывом.

Видеоопыт взаимодействия фосфора с безводной азотной кислотой можно посмотреть здесь.

Видеоопыт взаимодействия угля с безводной азотной кислотой можно посмотреть здесь.

7. Концентрированная а зотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной, либо промежуточной степени окисления): сульфиды металлов, сероводород, фосфиды, йодиды, соединения железа (II) и др. При этом азот восстанавливается до NO2, неметаллы окисляются до соответствующих кислот (или оксидов), а металлы окисляются до устойчивых степеней окисления.

Например , азотная кислота окисляет оксид серы (IV):

Еще пример : азотная кислота окисляет иодоводород:

Сера в степени окисления -2 окисляется без нагревания до простого вещества, при нагревании до серной кислоты.

Например , сероводород окисляется азотной кислотой без нагревания до молекулярной серы:

При нагревании до серной кислоты:

Соединения железа (II) азотная кислота окисляет до соединений железа (III):

8. Азотная кислота окрашивает белки в оранжево-желтый цвет («ксантопротеиновая реакция«).

Ксантопротеиновую реакцию проводят для обнаружения белков, содержащих в своем составе ароматические аминокислоты. К раствору белка прибавляем концентрированную азотную кислоту. Белок свертывается. При нагревании белок желтеет. При добавлении избытка аммиака окраска переходит в оранжевую.

Видеоопыт обнаружения белков с помощью азотной кислоты можно посмотреть здесь.

Характеристика азотной кислоты, что входит в состав

Азотная кислота — что из себя представляет

Азотная кислота H N O 3 —является сильной одноосновной кислотой-окислителем.

Соединение хорошо растворимо в воде. Концентрированный раствор дымит на воздухе. При обычных условиях вещество не имеет цвета.

Азот в соединении обладает валентностью, равной IV, по причине отсутствия валентности V у азота. Степень окисления азота при этом равна +5. Такая ситуация объясняется образованием атомом азота трех обменных связей и одной донорно-акцепторной. Атом азота играет роль донора электронной пары. В связи с этим, молекула азотной кислоты обладает строением, которое можно описать резонансными структурами:

Если нарисовать дополнительные связи, соединяющие азот и кислород, пунктирной линией, то она будет обозначать делокализованные электроны. Таким образом, формула примет вид:

Физические и химические свойства

Водные растворы H N O 3 :

  • «дымящая азотная кислота» обладает массовой долей 0,95 — 0,98;
  • концентрированная азотная кислота характеризуется массовой долей 0,6 — 0,7.

В водной среде образуется азеотропная смесь. В процессе кристаллизации азотной кислоты из водных растворов формируются кристаллогидраты:

  • моногидрат H N O 3 · H 2 O с температурой плавления −37,62 °C;
  • тригидрат H N O 3 · 3 H 2 O с температурой плавления −18,47 °C.

Азотная кислота в твердом агрегатном состоянии способна образовывать следующие кристаллические модификации:

  • моноклинная сингония;
  • ромбическая.

Формула

Водные растворы азотной кислоты обладают определенной плотностью, которая является функцией ее концентрации и определяется с помощью уравнения:

d ( c ) = 0 , 9952 + 0 , 564 c + 0 , 3005 c 2 — 0 , 359 c 3 , d ( c ) = 0 , 9952 + 0 , 564 c + 0 , 3005 c 2 — 0 , 359 c 3 ,

где d — плотность в г / с м 3 , c — массовая доля кислоты.

В том случае, когда требуется описать изменение плотности при концентрации азотной кислоты выше 97%, точность расчетов по данной формуле значительно снижается.

Физические свойства азотной кислоты:

  • жидкое агрегатное состояние при нормальных условиях;
  • малярная масса 63 , 012 г / м о л ь ;
  • плотность 1 , 513 г / с м 3 ;
  • температура плавления − 41 , 59 ° C ;
  • температура кипения 82 , 6 ° C .

Высококонцентрированная H N O 3 в большинстве случаев обладает бурой окраской. Цвет обусловлен процессом разложения, который протекает на свету:

4 H N O 3 ⟶ 4 N O 2 ↑ + 2 H 2 O + O 2 ↑

В процессе повышения температуры вещество распадается аналогично записанному уравнению. Исключить разложение при перегонке азотной кислоты можно, если создать среду с пониженным давлением. Частичное разложение азотной кислоты происходит в процессе кипения или под действием света.

H N O 3 , являясь сильной одноосновной кислотой, вступает в химические реакции с основными и амфотерными оксидами:

C u O + 2 H N O 3 ⟶ C u ( N O 3 ) 2 + H 2 O

Z n O + 2 H N O 3 ⟶ Z n ( N O 3 ) 2 + H 2 O

Азотная кислота взаимодействует с основаниями:

K O H + H N O 3 ⟶ K N O 3 + H 2 O

Азотная кислота способна вытеснять слабые кислоты из их солей:

C a C O 3 + 2 H N O 3 ⟶ C a ( N O 3 ) 2 + H 2 O + C O 2 ↑

При любой концентрации азотная кислота играет роль кислоты-окислителя. В процессе происходит восстановление азота до степени окисления от +5 до −3. То, насколько глубоко протекает восстановление, определяется по большей степени природой восстановителя и концентрацией азотной кислоты.

Золото, некоторые металлы платиновой группы и тантал инертны к азотной кислоте. Другие металлы вступают в химические реакции с азотной кислотой. Ход такого взаимодействия зависит от концентрации кислоты. При взаимодействии металлов с азотной кислотой водород не выделяется.

Являясь кислотой-окислителем, H N O 3 вступает в химические реакции с металлами, которые расположены в ряду напряжений правее водорода. В случае концентрированной азотной кислоты уравнение реакции примет вид:

C u + 4 H N O 3 ( 60 % ) ⟶ C u ( N O 3 ) 2 + 2 N O 2 ↑ + 2 H 2 O

В том случае, когда в данной реакции участвует разбавленная кислота, процесс будет реализован по следующей схеме:

3 C u + 8 H N O 3 ( 30 % ) ⟶ 3 C u ( N O 3 ) 2 + 2 N O ↑ + 4 H 2 O

Азотная кислота взаимодействует с металлами, которые расположены в ряду напряжений левее водорода:

Z n + 4 H N O 3 ( 60 % ) ⟶ Z n ( N O 3 ) 2 + 2 N O 2 ↑ + 2 H 2 O

3 Z n + 8 H N O 3 ( 30 % ) ⟶ 3 Z n ( N O 3 ) 2 + 2 N O ↑ + 4 H 2 O

4 Z n + 10 H N O 3 ( 20 % ) ⟶ 4 Z n ( N O 3 ) 2 + N 2 O ↑ + 5 H 2 O

5 Z n + 12 H N O 3 ( 10 % ) ⟶ 5 Z n ( N O 3 ) 2 + N 2 ↑ + 6 H 2 O

4 Z n + 10 H N O 3 ( 3 % ) ⟶ 4 Z n ( N O 3 ) 2 + N H 4 N O 3 + 3 H 2 O

Записанные уравнения основаны лишь на доминирующем продукте реакции. Это объясняется тем, что при созданных условиях продуктов данной реакции больше, чем продуктов других реакций. В качестве примера можно привести процесс химического взаимодействия цинка и азотной кислоты с массовой долей в растворе 30%. Продукты такой реакции содержат больше всего N O , в меньших количествах будут содержаться N O 2 , N 2 O , N 2 и N H 4 N O 3 .

Общую закономерность, которую можно наблюдать в процессе взаимодействия азотной кислоты с металлами, формулируют следующим образом: чем более разбавленная кислота и чем активнее металл, тем глубже восстанавливается азот:

увеличение концентрации кислоты ⇐ N O 2 , N O , N 2 O , N 2 , N H 4 N O 3 ⇒ ⇐ N O 2 , N O , N 2 O , N 2 , N H 4 N O 3 ⇒ увеличение активности металла

Некоторые из металлов, в том числе, железо, хром, алюминий, кобальт, никель, марганец, бериллий, вступают в химические реакции с разбавленной азотной кислотой, пассивируются концентрированной азотной кислотой и сохраняют стабильность при ее воздействии. Азотная кислота в любой концентрации не вступает в химическое взаимодействие с такими металлами, как золото и платина. Железо, алюминий, хром холодной концентрированной азотной кислотой пассивируются.

Разбавленная азотная кислота вступает в реакцию с железом. В результате образуются продукты восстановления азота и окисления железа:

F e + 4 H N O 3 ( 25 % ) ⟶ F e ( N O 3 ) 3 + N O ↑ + 2 H 2 O

4 F e + 10 H N O 3 ( 2 % ) ⟶ 4 F e ( N O 3 ) 2 + N H 4 N O 3 + 3 H 2 O

Азотная кислота способна окислять неметаллы. В результате в большинстве случаев происходит восстановление азота до N O или N O 2 :

S + 6 H N O 3 ( 60 % ) ⟶ H 2 S O 4 + 6 N O 2 ↑ + 2 H 2 O

S + 2 H N O 3 ( 40 % ) ⟶ H 2 S O 4 + 2 N O ↑

P + 5 H N O 3 ( 60 % ) ⟶ H 3 P O 4 + 5 N O 2 ↑ + H 2 O

3 P + 5 H N O 3 ( 30 % ) + 2 H 2 O ⟶ 3 H 3 P O 4 + 5 N O ↑

Азотная кислота обладает свойством окислять сложные вещества:

F e S + 4 H N O 3 ( 30 % ) ⟶ F e ( N O 3 ) 3 + S + N O ↑ + 2 H 2 O

Определенные органические соединения, к примеру, амины и скипидар, могут самовозгораться в процессе реакции с концентрированной азотной кислотой.

Смесь, в которую входят азотная и серная кислоты, называют «меланж». Азотная кислота активно применяется в производстве нитросоединений.

В том случае, когда смешивают три объема соляной кислоты и один объем азотной кислоты, получается смесь под названием «царская водка». Этот продукт способен растворять большинство металлов, включая золото и платину. Свойства такого сильного окислителя объясняются формированием атомарного хлора и хлорида нитрозила:

3 H C l + H N O 3 → 150 o C N O C l + C l 2 ↑ + 2 H 2 O

Химические реакции концентрированных азотной и соляной кислот с благородными металлами:

A u + H N O 3 + 4 H C l ⟶ H [ A u C l 4 ] + N O ↑ + 2 H 2 O

3 P t + 4 H N O 3 + 18 H C l ⟶ 3 H 2 [ P t C l 6 ] + 4 N O ↑ + 8 H 2 O

Азотная кислота не вступает в химические реакции со стеклом и фторопластом-4.

Разложение солей азотной кислоты

Азотная кислота относится к типу сильных кислот. Соли кислоты называют нитратами. Данные продукты являются результатом взаимодействия азотной кислоты с металлами или их оксидами и гидроксидами. Каждый нитрат отличается высокой растворимостью в воде. Нитрат-ион в воде не гидролизуется.

Нагрев солей азотной кислоты приводит к их необратимому разложению. В результате образуются продукты реакции, состав которых зависит от катиона металла, входящего в состав данной соли.

Образование нитратов металлов, которые расположены в ряду напряжений с левой стороны от магния (за исключением лития):

2 K N O 3 → 450 o C 2 K N O 2 + O 2 ↑

Образование нитратов металлов, которые находятся в ряду напряжений между магнием и медью (и лития):

4 A l ( N O 3 ) 3 → 180 o C 2 A l 2 O 3 + 12 N O 2 ↑ + 3 O 2 ↑

Реакция нитратов металлов, находящихся в ряду напряжений с правой стороны от меди:

2 A g N O 3 → 400 o C 2 A g + 2 N O 2 ↑ + O 2 ↑

Реакция нитрата аммония:

N H 4 N O 3 → 240 o C N 2 O ↑ + 2 H 2 O

Нитраты в воде почти не проявляют окислительных свойств. С другой стороны, при высокой температуре, находясь в твердом агрегатном состоянии представляют собой сильные окислители. В качестве примера можно привести сплавления твердых веществ:

F e + 3 K N O 3 + 2 K O H → 420 o C K 2 F e O 4 + 3 K N O 2 + H 2 O

Цинк и алюминий в присутствии щелочного раствора способны восстанавливать нитраты до N H 3 :

3 K N O 3 + 8 A l + 5 K O H + 18 H 2 O → 3 N H 3 ↑ + 8 K [ A l ( O H ) 4 ]

Соли азотной кислоты в виде нитратов нашли применение в качестве удобрений. Почти все виды данных веществ характеризуются высокой степенью растворимости в водной среде. Это объясняет немногочисленность соединений в виде минералов, представленных в природном мире. В качестве исключения можно выделить чилийскую (натриевую) селитру и индийскую селитру (нитрат калия). Нитраты в большинстве своем синтезированы искусственным путем.

Промышленное производство, применение и действие на организм

Азотная кислота — самый крупнотоннажный продукт химической промышленности.

Современным способом синтеза этого вещества является каталитическое окисление синтетического аммиака с применением платино-родиевых катализаторов (процесс Оствальда) до смеси из оксидов азота (нитрозных газов), которые в дальнейшем поглощаются водой:

4 N H 3 + 5 O 2 → P t / R h 4 N O ↑ + 6 H 2 O

2 N O + O 2 → 2 N O 2 ↑

4 N O 2 + O 2 + 2 H 2 O → 4 H N O 3

Записанные реакции являются экзотермическими. Первый процесс носит необратимый характер, а следующие — обратимы. В том случае, когда азотная кислота получена данным методом, ее концентрация определяется технологическим регламентом процесса и соответствует интервалу от 45% до 58%. С целью получения концентрированной азотной кислоты требуется сместить равновесие в третьей реакции, повышая давление до 50 атмосфер.

Первым в истории химии методом получения азотной кислоты, который открыли алхимики, является нагрев смеси селитры и железного купороса:

4 K N O 3 + 2 F e S O 4 · 7 H 2 O → t o F e 2 O 3 + 2 K 2 S O 4 + 2 H N O 3 ↑ + 2 N O 2 ↑ + 6 H 2 O

Синтез чистой азотной кислоты заключается в воздействии концентрированной серной кислоты на селитру. Данный способ открыл Иоганн Рудольф Глаубер:

K N O 3 + H 2 S O 4 → t o K H S O 4 + H N O 3 ↑

«Дымящую азотную кислоту», которая почти не содержит воду, получают путем дальнейшей дистилляции.

Области применения азотной кислоты:

  1. Выпуск минеральных удобрений.
  2. Военная промышленность. «Дымящую азотную кислоту» используют для производства взрывчатки, окисления ракетного топлива. Разбавленную азотную кислоту применяют в синтезе разных веществ, включая соединения, обладающие отравляющими свойствами.
  3. В некоторых случаях азотную кислоту используют в фотографии. С помощью разбавленного раствора подкисляют определенные тонирующие составы.
  4. Станковая графика. Азотную кислоту применяют для травления печатных форм в виде офортных досок, цинкографических типографских форм и магниевых клише.
  5. Изготовление красящих составов и лекарственных препаратов, к примеру, нитроглицерина.
  6. Ювелирное дело. С помощью азотной кислоты выявляют наличие золота в сплавах.
  7. Основной органический синтез нитроалканов, анилина, нитроцеллюлозы, тротила и т.д.

Азотная кислота является ядовитым веществом. Степень воздействия соединения на организм отмечена третьим классом опасности. Пары азотной кислоты способны причинить существенный вред, в том числе, раздражение дыхательных путей. Азотная кислота при контакте с кожными покровами оставляет язвы, которые потом достаточно долго заживают.

На коже азотная кислота оставляет желтые следы, что является следствием ксантопротеиновой реакции. В процессе повышения температуры или при воздействии света происходит разложение азотной кислоты. В результате химического процесса образуется высокотоксичный диоксид азота N O 2 в газообразном агрегатном состоянии, имеющий бурую окраску. Максимально допустимая концентрация азотной кислоты в воздухе рабочей зоны по N O 2 2 м г / м 3 .

Азотная кислота

Азотная кислота является одной из самых сильных минеральных кислот, в концентрированном виде выделяет пары желтого цвета с резким запахом. За исключением золота и платины растворяет все металлы.

Применяют азотную кислоту для получения красителей, удобрений, органических нитропродуктов, серной и фосфорной кислот. В результате ожога азотной кислотой образуется сухой струп желто-зеленого цвета.

В промышленности азотную кислоту получают в результате окисления аммиака на платино-родиевых катализаторах.

Чистая азотная кислота впервые была получена действием на селитру концентрированной серной кислоты:

Является одноосновной сильной кислотой, вступает в реакции с основными оксидами, основаниями. С солями реагирует при условии выпадения осадка, выделения газа или образования слабого электролита.

При нагревании азотная кислота распадается. На свету (hv) также происходит подобная реакция, поэтому азотную кислоту следует хранить в темном месте.

Реакции с неметаллами

Азотная кислота способна окислить все неметаллы, при этом, если кислота концентрированная, азот обычно восстанавливается до NO2, если разбавленная — до NO.

В любой концентрации азотная кислота проявляет свойства окислителя, при этом азот восстанавливается до степени окисления от +5 до -3. На какой именно степени окисления остановится азот, зависит от активности металла и концентрации азотной кислоты.

Для малоактивных металлов (стоящих в ряду напряжений после водорода) реакция с концентрированной азотной кислотой происходит с образованием нитрата и преимущественно NO2.

С разбавленной азотной кислотой газообразным продуктом преимущественно является NO.

В реакциях с металлами, стоящими левее водорода в ряду напряжений, возможны самые разные газообразные (и не газообразные) продукты: бурый газ NO2, NO, N2O, атмосферный газ N2, NH4NO3.

Помните о закономерности: чем более разбавлена кислота и активен металл, тем сильнее восстанавливается азот. Ниже представлены реакции цинка с азотной кислотой в различных концентрациях.

Посмотрите на таблицу ниже, в которой также отражены изученные нами закономерности.

Концентрированная холодная азотная кислота пассивирует хром, железо, алюминий, никель, свинец и бериллий. Это происходит за счет оксидной пленки, которой покрыты данные металлы.

Al + HNO3(конц.) ⇸ (реакция не идет)

При нагревании или амальгамировании (покрытие ртутью) перечисленных металлов реакция с азотной кислотой идет, так как оксидная пленка на поверхности металлов разрушается.

Соли азотной кислоты — нитраты NO3

Получают нитраты в ходе реакции азотной кислоты с металлами, их оксидами и основаниями.

В реакциях с оксидами и основаниями газообразный продукт обычно не выделяется.

Нитрат аммония получают реакция аммиака с азотной кислотой.

Обратите внимание на следующую закономерность: концентрированная азотная кислота, как правило, окисляет железо и хром до +3. Разбавленная кислота — до +2.

    Реакции с металлами, основаниями и кислотами

Как и для всех солей, из нитратов можно вытеснить металл другим более активным. Соли реагируют с основаниями и кислотами, если в результате реакции выпадает осадок, выделяется газ или образуется слабый электролит (вода).

Нитраты разлагаются в зависимости от активности металла, входящего в их состав.

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.


источники:

http://wika.tutoronline.ru/himiya/class/9/harakteristika-azotnoj-kisloty-chto-vhodit-v-sostav

http://studarium.ru/article/170