Запишите дифференциальное уравнение гармонических колебаний для колебательного контура

Свободные гармонические колебания в колебательном контуре.

Свободные электрические колебания в колебательном контуре являются гармоническими, если его электрическое сопротивление R = 0.

Дифференциальное уравнение свободных гармонических колебаний заряда в контуре

Заряд q совершает гармонические колебания по закону

с циклической частотой

Эта формула называется — формула Томсона. В формуле Томсона — амплитуда колебаний заряда. Сила тока в колебательном контуре

опережает по фазе колебания заряда q на .

Здесь — амплитуда силы тока.

Разность потенциалов обкладок конденсатора также изменяется по гармоническому закону и совпадает по фазе с зарядом q

где — амплитуда разности потенциалов. Амплитуда тока

Величина называется волновым сопротивлением колеба­тельного контура.

15.Сложение гармонических колебаний.

Если система одновременно участвует в нескольких колебательных процессах, то под сложением колебаний понимают нахождение закона,

описывающего результирующий колебательный процесс.

используем метод вращающегося вектора амплитуды (метод векторных диаграмм).

Так как векторы А1 и A2 вращаются с одинаковой угловой скоростью ω, то разность фаз между ними остается постоянной.

Уравнение результирующего колебания будет

где амплитуда А и начальная фаза 𝜑 задаются соотношениями

Сумма двух гармонических колебаний одного направления и одинаковой частоты есть гармоническое колебание в том же направлении и с той же

частотой, что и складываемые колебания.

Амплитуда результирующего колебания зависит от разности фаз складываемых колебаний:

1) , где (т = 0,1,2. ), тогда А = А12;

2) , где (т = 0,1,2. ), тогда А = |А1 — А2|.

16.Биения.

Биениями называются периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами.

Пусть амплитуды складываемых колебаний равны А, а частоты равны 𝜔 и ω+∆ω, причем ∆ω≪ω. Путь для простоты начало отсчета выбрано так, чтобы начальные фазы обоих колебаний были равны нулю

,

Результирующее колебание будет иметь вид — гармоническое колебание с частотой ω, амплитуда которого изменяется по закону с частотой (частота биений вдвое больше частоты изменения косинуса, поскольку А6иений берется по модулю).

17. Разложение Фурье..

Любое сложное периодическое колебание s = f(t) можно представить в виде суммы простых гармонических колебаний с циклическими частотами, кратными основной циклической частоте ω0

Такое представление периодической функции f(t) называется разложением ее в ряд Фурье или гармоническим анализом сложного периодического колебания.

Члены ряда Фурье, соответствующие гармоническим колебаниям с циклическими частотами ω0, 2ω0, 3ω0 и т. д., называются первой (или

основной), второй, третьей и т. д., гармониками сложного периодического колебания s = f(t).

Совокупность этих гармоник образует спектр колебания s = f(t).

18. Сложение взаимно перпендикулярных гармонических колебаний одинаковой частоты.

Пусть два гармонических колебания одинаковой частоты , происходят во взаимно перпендикулярных направлениях вдоль осей х и у. Для простоты выберем начало отсчета так, чтобы начальная фаза первого колебания была равна нулю

где α — разность фаз колебаний, а А и В — их амплитуды. Уравнение траектории результирующего колебания (исключая t из уравнений) есть уравнение эллипса, произвольно расположенного относительно координатных осей,

и такие колебания называются эллиптически поляризованными.

19. Линейно поляризованные колебания.

Если разность фаз равна то

эллипс вырождается в отрезок прямой

где знак плюс соответствует нулю и четным значениям m, а знак минус — нечетным значениям m.

Результирующее колебание является гармоническим колебанием с частотой со и амплитудой и совершается вдоль прямой, составляющей с осью х угол . Такие колебания называются линейно поляризованными колебаниями.

20. Циркулярно поляризованные колебания.

Если разность фаз , где

(m = 0, ± 1, ± 2. ), то уравнение траектории

Это уравнение эллипса, оси которого совпадают с осями координат, а его полуоси равны соответствующим амплитудам А и В.

Если А=В, то эллипс вырождается в окружность, и такие колебания называются циркулярно поляризованными или колебаниями, поляризованными по кругу.

21. Фигуры Лиссажу.

Если взаимно перпендикулярные колебания происходят с циклическими частотам и , где qи р — целые числа

то значения координат х и у одновременно повторяются через одинаковые промежутки времени Т0 равные наименьшему общему кратному периодов и колебаний вдоль осей х и у. Траектории замкнутых кривых, которые получаются в этих случаях, называются фигурами Лиссажу.

Вид этих кривых зависит от соотношения амплитуд, частот и разности фаз складываемых колебаний. На рисунке показан вид фигур Лиссажу при трех различных значениях отноше­ния (2:1, 3:2, 4:3) и разности фаз

ЗАТУХАЮЩИЕ И ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ.

22. Затухающие колебания.

Затуханием колебаний называется постепенное ослабление колебаний стечением времени, обусловленное потерей энергии колебательной системой.

Затухание механических колебаний вызывается главным образом трением. Затухание в электрических колебательных системах вызывается тепловыми потерями и потерями на излучение электромагнитных волн, а также тепловыми потерями в диэлектриках и ферромагнетиках вследствие электрического и магнитного гистерезиса.

Закон затухания колебаний определяется свойствами колебательных систем.

Система называется линейной, если параметры, характеризующие те физические свойства системы, которые существенны для рассматриваемого процесса, не изменяются в ходе процесса.

Линейные системы описываются линейными дифференциальными уравнениями.

Различные по своей природе линейные системы описываются одинаковыми уравнениями, что позволяет осуществлять единый подход к изучению колебаний различной физической природы.

23. Дифференциальное уравнение свободных затухающих колебаний линейной системы

Дифференциальное уравнение свободных затухающих колебаний

линейной системы имеет вид

где s — колеблющаяся величина,

δ=const— коэффициент затухания,

ω0 — циклическая частота свободных незатухающих колебаний той же колебательной системы (при δ=0).

В случае малых затуханий решение этого уравнения:

,

где: — амплитуда зату­хающих колебаний,

А0 — начальная амплитуда,

— циклическая частота затухающих колебаний.

Промежуток времени , в течение которого амплитуда затухающих колебаний уменьшается в е раз называется временем релаксации.
Затухание нарушает периодичность колебаний.
Затухающие колебания не являются периодическими.
Однако если затухание мало, то можно условно пользоваться понятием периода затухающих колебаний как промежутка времени между двумя последующими максимумами колеблющейся физической величины

24. Декремент затухания.

Если A(t) и A(t+T) — амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающихся на период, то отношение

называется декрементом затухания, а его логарифм

называется логарифмическим декрементом затухания.

Здесь N — число колебаний, совершаемых за время уменьшения амплитуды в е раз.

25.Добротность колебательной системы.

Добротностью колебательной системы называется безразмерная величина Q, равная произведению на отношение энергии W(t) колебаний системы в произвольный момент времени tк убыли этой энергии за промежуток времени от t до t+T (за один условный период затухающих колебаний)

Энергия W(t) пропорциональна квадрату амплитуды А(t), поэтому

При малых значениях логарифмического декремента затухания , поэтому (принимая Т≈T0) .

26. Примеры свободных затухающих колебаний

Рассмотрим затухающие колебания различной физической природы:

a. механические колебания — пружинный маятник с массой m , который совершает малые колебания под действием упругой силы F = -kx и силы трения (r — коэффициент сопротивления)

b. электромагнитные колебания — колебания в колебательном контуре состоящем из сопротивления R, индуктивности L и емкости С

Будем сравнивать оба случая с дифференциальным уравнением свободных затухающих колебаний линейной системы

решение которого имеет вид

27. Вынужденные колебания.

Чтобы в реальной колебательной системе получить незатухающие колебания, надо компенсировать потери энергии. Такая компенсация возможна с помощью какого-либо периодически действующего фактора X(t), изменяющегося по гармоническому закону

В случае механических колебаний таким фактором является вынуждающая сила . Закон движения для пружинного маятника

будет иметь вид

В случае электрического колебательного контура роль X(t) играет подводимая к контуру внешняя ЭДС или переменное напряжение . Уравнение колебаний в контуре будет иметь вид

В общем виде дифференциальное уравнение вынужденных колебаний имеет вид

Это уравнение — линейное неоднородное дифференциальное уравнение. Его решение равно сумме общего решения однородного

уравнения и частного решения неоднородного уравнения. Можно показать, частное решение имеет вид

где А и φ задаются формулами

Так для электромагнитных колебаний, если обозначить а — сдвиг по фазе между зарядом и приложенным напряжением, то можно показать, что решение дифференциального уравнения будет иметь вид где

Сила тока при установившихся колебаниях

Силу тока можно записать в виде , где

сдвиг по фазе между током и приложенным напряжением. Тогда можно показать, что

Резонансом называется явление резкого возрастания амплитуды

вынужденных колебаний при приближении частоты вынуждающей силы (или, в случае электрических колебаний, частоты вынужда­ющего переменного напряжения) к частоте, равной или близкой собственной частоте колебательной системы.

Амплитуда вынужденных колебаний имеет максимум при частоте

, которая называется резонансной частотой. (Первая производная знаменателя ( ) обращается в нуль при .)

При , амплитуда достигает предельного значения , которое называется статическим отклонением. В случае механических колебаний . В случае электромагнитных колебаний

При , амплитуда стремится к нулю.

В случае малого затухания, когда , резонансная амплитуда

где Q — добротность колебательной системы, A0 — статическое отклонение.

Таким образом, добротность характеризует резонансные свойства колебательной системы — чем больше Q, тем больше A0.

29. Переменный ток.

Переменным током называются вынужденные колебания тока в цепи, совпадающие с частотой вынуждающей ЭДС.

Пусть переменная ЭДС (или переменное напряжение) имеет вид

Где Um — амплитуда напряжения.

Тогда на участке цепи, имеющей сопротивление R, емкость С и индуктивность L, закон Ома будет иметь вид

или

Рассмотрим частные случаи цепи.

(1)R≠0, C→ 0, L→ 0: переменное напряжение приложено к сопротив­лению R. Закон Ома

Амплитуда силы тока

Колебания тока происходят в одной фазе с напряжением.

Для наглядности воспользуемся методом векторных

диаграмм и будем изображать векторами, угол между которыми равен разности фаз.

(2)R→0, C→ 0, L≠ 0: переменное напряжение приложено к катушке индуктивности.
ЭДС самоиндукции в катушке

Закон Ома , откуда после интегрирования получим

где .

Таким образом, падение напряжения UL опережает по фазе ток I, текущий через катушку, на .

Величина называется реактивным индуктивным сопротивлением. Для посто­янного тока (ω=0) катушка индуктивности не имеет сопротивления.

(3)R→ 0, C≠ 0, L→ 0: переменное напряжение приложено к конденса­тору.

где

Таким образом,падение напряжения UС отстает по фазе от текущего через конденсатор тока I на .

Величина называется реактивным емкостным сопротивлением. Для постоянного тока (ω=0) RC=∞, т.е. постоянный ток через конденсатор течь не может.

(4) В общем случае R≠ 0, C≠ 0, L≠ 0. Если напряжение в цепи

изменяется по закону , то в цепи течет ток

где и ф определяются формулами

Величина называется полным сопротивле­нием цепи.

Величина называется реактивным сопротивлением.

Таким образом, , , причем , .

30. Резонанс напряжений.

Если , то φ=0 — изменения тока и напряжения происходят синфазно. В этом случае Z=R и ток определяется только активным сопротивлением и достигает максимально возможного значения. Падение напряжения на конденсаторе UC и на катушке индуктивности UL одинаковы по амплитуде и противоположны по фазе. Это явление называется резонансом напряжений (последовательным резонансом).

Частота называется резонансной.

31. Резонанс токов.

К цепи переменного тока, содержащей параллельно включенные конденсатор емкостью С и катушку индуктивностью L, приложено напряжение

Токи в ветаях 1С2 (R = 0,L = 0) и 1L2 (R=0, C=∞) равны

и противоположны по фазам. Амплитуда силы тока во внешней (неразветвленной) цепи

Если , то Im1=Im2 и Im =0. Явление резкого уменьшения амплитуды силы тока во внешней цепи, питающей параллельно включенные конденсатор и катушку индуктивности, при приближении частоты ω приложенного напряжения к резонансной частоте ωрез называется

резонансом токов (параллельным резонансом).

В реальных цепях R≠0, поэтому сила тока Im>0, но принимает

наименьшее возможное значение.

32. Действующее значение переменного тока.

Действующим или эффективным значением переменного тока называется среднее квадратичное значение силы тока за период Т его изменения

поскольку

Аналогично, действующее значение напряжения:

33. Мощность, выделяемая в цепи переменного тока.

Мгновенная мощность тока в цепи

Среднее за период значение мгновенной мощности называется активной мощностью Р тока

Множитель cosφ называется коэффициентом мощности.

Так как , и , то .

Если в цепи отсутствует реактивное сопротивление (X = 0) , то cos𝜑=1 и P=IU.

Если цепь содержит только реактивное сопротивление (R= 0), то cosφ=0 и Р = 0, какими бы большими ни были ток и напряжение.

Волны в упругой среде.

34. Волновой процесс.

Если возбудить колебания в какой-либо точке среды (твердой, жидкой или газообразной) то, вследствие взаимодействия между частицами среды, эти колебания будут передаваться от одной точки среды к другой со скоростью, зависящей от свойств среды.

При рассмотрении колебаний не учитывается детальное строение среды; среда рассматривается как сплошная, непрерывно распределенная в пространстве и обладающая упругими свойствами.

Среда называется линейной, если ее свойства не изменяются под действием возмущений, создаваемых колебаниями.

Волновым процессом или волной — называется процесс распро­странения колебаний в сплошной среде.

При распространении волны частицы колеблются около своих положений равновесия, а не перемещаются вслед за волной.

Вместе с волной от частицы к частице передается только состояние колебательного движения и его энергия.

Основным свойством всех волн является перенос энергии без переноса вещества.

35. Упругие волны.

Упругими (или механическими) волнами называются механические возмущения, распространяющиеся в упругой среде.

Продольная волна — волна, в которой частицы среды колеблются в направлении распространения волны.

Поперечная волна — волна, в которой частицы среды колеблются в плоскостях, перпендикулярных направлению распространения волны.

Продольные волны могут распространяться в средах, в которых возникают упругие силы при деформации сжатия и растяжения (в твердых, жидких и газообразных телах).

Поперечные волны могут распространяться только в среде, в которой возникают упругие силы при деформации сдвига (только в твердых телах).

36. Упругая гармоническая волна.

Упругая волна называется гармонической, если соответствующие ей колебания частиц среды являются гармоническими.

Пусть гармоническая волна распространяется со скоростью и вдоль оси ОХ. Обозначим смещения частиц среды через ξ=ξ(x,t).

Для данного момента времени t зависимость между смещением частиц среды и расстоянием х этих частиц от источника колебаний О можно представить в виде графика волны.

Отличие графика волныот графика гармонического колебания:

1)график волны представляет зависимость смещения всех частиц среды от расстояния до источника колебаний в данный момент времени ξ=ξ(x,t=const);

2)график гармонического колебания это зависимость смещения данной частицы от времени ξ=ξ(x=const,t).

Длиной волны λ называется расстояние между ближайшими частицами, колеблющимися в одинаковой фазе.

Длина волны равна расстоянию, на которое распространяется гармоническая волна за время, равное периоду колебаний Т:

где n — частота колебаний, υ — скорость распространения волны.

Волновым фронтом называется геометрическое место точек, до которых доходят колебания к определенному моменту времени t.

Волновой поверхностью называется геометрическое место точек, колеблющихся в одинаковой фазе.

Волновых поверхностей можно провести бесчисленное множество, а волновой фронт в каждый момент времени — один.

37.Бегущие волны.

Бегущими волнами называются волны, которые переносят в пространстве энергию.

Перенос энергии количественно характеризуется вектором плотности потока энергии (вектор Умова). Направление этого вектора совпадает с направлением распространения энергии, а его модуль равен энергии, переносимой волной за единицу времени через единичную площадку, расположенную перпендикулярно волне.

Важными примерами бегущих волн являются плоская и сферическая волны.

Волна называется плоской, если ее волновые поверхности представляют совокупность плоскостей, параллельных друг другу.

Волна называется сферической, если ее волновые поверхности имеют вид концентрических сфер. Центры этих сфер называются центром волны.

38. Уравнение плоской волны.

Пусть точки, которые расположены в плоскости х=0, колеблются по закону ξ(0,t)=Acos𝜔t. И пусть υ— скорость распространения колебаний в данной среде.

Колебания частицы В среды (см. рисунок), расположенной на расстоянии х от источника колебаний О, будут происходить по тому же закону. Но, поскольку для прохождения волной расстояния х требуется время , то

ее колебания будут отставать по времени от колебания источника на τ.

Уравнение колебаний частиц, лежащих в плоскости х, имеет вид

Следовательно, функция ξ(x,t) является не только периодической

функцией времени, но и периодической функцией координаты х.

В общем случае уравнение плоской волны, распространяющейся вдоль положительного направления оси х в среде, не поглощающей энергию, имеет вид

здесь: А = const — амплитуда волны,

ω — циклическая частота,

φ0 — начальная фаза волны,

— фаза плоской волны.

Если определить волновое число

то уравнение плоской бегущей волны можно записать в виде

или в экспоненциальной форме

где физический смысл имеет только вещественная часть.

В общем виде уравнение плоской волны, распространяющейся в направлении имеет вид

39. Фазовая скорость.

Скорость в этих уравнениях есть скорость распространения фазы волны и ее называют фазовой скоростью.

Действительно, пусть в волновом процессе фаза постоянна

40. Уравнение сферической волны.

где r — расстояние от центра волны до рассматриваемой точки среды.

Амплитуда колебаний в сферической волне убывает с расстоянием по

закону

41. Волновое уравнение.

Распространение волн в однородной изотропной среде в общем случае описывается волновым уравнением — дифференциальным уравнением в частных производных

или

где υ— фазовая скорость,

— оператор Лапласа.

Решением волнового уравнения является уравнение любой волны (в том числе и плоская и сферическая волны).

Волновое уравнение для плоской волны, распространяющейся вдоль оси x.

42. Принцип суперпозиции.

Если среда, в которой распространяется одновременно несколько волн, линейна, то к этим волнам применим принцип суперпозиций (наложения) волн:

При распространении в линейной среде нескольких волн каждая из них распространяется так, как будто другие волны отсутствуют, а результирующее смещение частицы среды в любой момент времени равно геометрической сумме смещений, которые получают частицы, участвующие в каждом из слагающих волновых процессов.

43. Групповая скорость.

Любое сложное колебание может быть представлено в виде суммы одновременно совершающихся гармонических колебаний (разложение Фурье).

Поэтому любая волна может быть представлена в виде суммы гармонических волн, то есть в виде волнового пакета или группы волн.

Волновым пакетом называется суперпозиция волн, мало отличающихся друг от друга по частоте, занимающая в каждый момент времени ограниченную область пространства.

За скорость распространения волнового пакета принимают скорость перемещения максимума его амплитуды (центра волнового пакета).

Групповой скоростью и называется скорость движения группы волн, образующих в каждый момент времени локализованный в пространстве волновой пакет (или скорость движения центра волнового пакета).

Связь групповой и фазовой скоростей

44. Интерференция волн.

Когерентностью называется согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов.

Две волны называются когерентными, если разность их фаз не зависит от времени.

Гармонические волны, имеющие одинаковую частоту, когерентны всегда. Интерференцией волн называется явление наложения волн, при котором происходит устойчивое во времени их взаимное усиление в одних точках пространства и ослабление в других в зависимости от соотношения между фазами этих волн.

Рассмотрим наложение двух когерентных сферических волн, возбуждаемых точечными источниками, колеблющимися с одинаковыми амплитудой А0, частотой со и постоянной разностью фаз

где r1 и r2 — расстояния от источников до рассматриваемой точки, к — волновое число, φ1 и φ2 — начальные фазы волн.

Амплитуда результирующей волны

Поскольку для когерентных источников 𝜑1+𝜑2=const, то результат

интерференции двух волн зависит от величины (r1-r2), называемой

Интерференционный максимум наблюдается в точках, где (т = 0,1,2. ).

Числа (m=0,1,2. ) называются порядком интерференционного максимума.

Интерференционный минимум наблюдается в точках,ГД е (m=0,1, 2. ).

Числа (m= 0,1,2. ) называются порядком интерференционного минимума.

45. Стоячие волны.

Особым случаем интерференции являются стоячие волны. Стоячие волны — это волны, образующиеся при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами. Пусть две плоские бегущие волны с одинаковыми амплитудами и частотами распространяются навстречу друг другу вдоль оси х

Сложив эти уравнения, с учетом cos(𝛼±𝛽)=cosαcos𝛽±sinαsinβ и k=2𝜋/λ, получим уравнение стоячей волны


В точках среды, где

(m = 0,1,2. ) амплитуда стоячей волны достигает максимального значения AСТ=2A

Такие точки называются пучностями cтоячей волны.

В точках среды, где

(т = 0,1,2. ), амплитуда стоячей обращается в нуль AСТ=2A. Такие точки называются узлами стоячей волны.

Координаты узлов: .

Расстояния между двумя соседними узлами и между двумя соседними пучностями одинаковы и равны половине длины волны λ бегущих волн. Эту

величину называют длиной стоячей волны

Образование стоячих волн наблюдают при интерференции бегущей и отраженной волн.

Если среда, от которой происходит отражение, менее плотная, то на границе сред образуется пучность.

Если среда, от которой происходит отражение, более плотная, то на границе сред образуется узел стоячей волны.

46. Эффект Доплера.

Эффектом Доплера называется изменение частоты колебаний, воспринимаемой приемником, при движении источника этих колебаний и приемника друг относительно друга. В акустике эффект Доплера проявляется как повышение тона при приближении источника звука к приемнику и понижения тона звука при удалении источника от приемника.

Пусть источник и приемник звука движутся вдоль соединяющей их прямой; υi и υp — скорости источника и приемника (положительны при сближении и

отрицательны при удалении источника и приемника); n0 — частота колебаний источника; υ- скорость распространения звука в данной среде.

a. Источник и приемник покоятся относительно среды.

. Длина волны . Распространяясь в среде, волна

достигнет приемника и вызовет его колебания с частотой .

b. Приемник приближается к источнику, а источник покоится.

. Скорость распространения волны относительно приемника

станет равной , при этом длина волны не меняется, следовательно

Частота колебаний, воспринимаемых приемником увеличится.

c. Источник приближается к приемнику, а приемник покоится.

. Скорость распространения колебаний υ зависит только от свойств среды, поэтому за время, равное периоду колебаний источника, излученная им волна пройдет в направлении к приемнику расстояние . Источник же пройдет расстояние . Поэтому к моменту окончания излучения волны длина волны в направлении движения сократится и станет . Частота колебаний которые воспринимает приемник, увеличится

d. Источник и приемник движутся друг относительно друга.

Этот случай обобщает два предыдущих. Частота колебаний, воспринимаемых приемником.

Верхний знак берется, если при движении источника или приемника происходит их сближение, нижний знак — в случае их взаимного удаления.

Если направления скоростей не совпадают с проходящей через источник и приемник прямой, то вместо этих скоростей в формуле надо брать их проекцию на направление этой прямой.

ЭЛЕКТРОМАГНИТНЫН ВОЛНЫ.

47. Электромагнитные волны.

Электромагнитные волны — это переменное электромагнитное поле, распространяющееся в пространстве с конечной скоростью.

Существование электромагнитных волн вытекает из уравнений

Максвелла

Дата добавления: 2014-10-31 ; просмотров: 689 ; Нарушение авторских прав

Уравнение гармонических колебаний

Вы будете перенаправлены на Автор24

Колебаниями называют любые периодические движения. Если при таких движениях изменения какой- либо величины описывают с помощью законов синуса или косинуса, то такие колебания называют гармоническими. Рассмотрим контур, из конденсатора (который перед включением в цепь зарядили) и катушки индуктивности (рис.1).

Уравнение гармонических колебаний можно записать следующим образом:

где $t$-время; $q$ заряд, $q_0$— максимальное отклонение заряда от своего среднего (нулевого) значения в ходе изменений; $<\omega >_0t+<\alpha >_0$- фаза колебаний; $<\alpha >_0$- начальная фаза; $<\omega >_0$- циклическая частота. За период фаза меняется на $2\pi $.

уравнение гармонических колебаний в дифференциальном виде для колебательного контура, который не будет содержать активного сопротивления.

Любой вид периодических колебаний можно точности представить как сумму гармонических колебаний, так называемого гармонического ряда.

Для периода колебаний цепи, которая состоит из катушки и конденсатора мы получим формулу Томсона:

Если мы продифференцируем выражение (1) по времени, то можем получить формулу фунци $I(t)$:

Напряжение на конденсаторе, можно найти как:

Из формул (5) и (6) следует, что сила тока опережает напряжение на конденсаторе на $\frac<\pi ><2>.$

Гармонические колебания можно представлять как в виде уравнений, функций так и векторными диаграммами.

Уравнение (1) представляет свободные незатухающие колебания.

Уравнение затухающих колебаний

Изменение заряда ($q$) на обкладках конденсатора в контуре, при учете сопротивления (рис.2) будет описываться дифференциальным уравнением вида:

Готовые работы на аналогичную тему

Если сопротивление, которое входит в состав контура $R \[q=A_0e^<\left(-\beta t\right)>_0\right)\left(7\right),\ >\]

где $\omega =\sqrt<\frac<1>-\frac<4L^2>>$ — циклическая частота колебаний. $\beta =\frac<2L>-$коэффициент затухания. Амплитуда затухающих колебаний выражается как:

В том случае, если при $t=0$ заряд на конденсаторе равен $q=q_0$, тока в цепи нет, то для $A_0$ можно записать:

Фаза колебаний в начальный момент времени ($<\alpha >_0$) равна:

При $R >2\sqrt<\frac>$ изменение заряда не является колебаниями, разряд конденсатора называют апериодическим.

Задание: Максимальное значение заряда равно $q_0=10\ Кл$. Он изменяется гармонически с периодом $T= 5 c$. Определите максимально возможную силу тока.

Решение:

В качестве основания для решения задачи используем:

Для нахождения силы тока выражение (1.1) необходимо продифференцировать по времени:

где максимальным (амплитудным значением) силы тока является выражение:

Из условий задачи нам известно амплитудное значение заряда ($q_0=10\ Кл$). Следует найти собственную частоту колебаний. Ее выразим как:

В таком случае искомая величина будет найдена при помощи уравнений (1.3) и (1.2) как:

Так как все величины в условиях задачи представлены в системе СИ, проведем вычисления:

Ответ: $I_0=12,56\ А.$

Задание: Каков период колебаний в контуре, который содержит катушку индуктивности $L=1$Гн и конденсатор, если сила тока в контуре изменяется по закону: $I\left(t\right)=-0,1sin20\pi t\ \left(A\right)?$ Какова емкость конденсатора?

Решение:

Из уравнения колебаний силы тока, которое приведено в условиях задачи:

мы видим, что $<\omega >_0=20\pi $, следовательно, мы можем вычислить период Колебаний по формуле:

По формуле Томсона для контура, который содержит катушку индуктивности и конденсатор, мы имеем:

Ответ: $T=0,1$ c, $C=2,5\cdot <10>^<-4>Ф.$

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 13 04 2021

Лекция №7. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ

5.1. Свободные гармонические колебания и их характеристики.

Колебания − это движения или процессы, обладающие той или иной степенью повторяемости во времени. Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебания, повторяются через равные промежутки времени. Наиболее важными характеристиками колебания являются: смещение, амплитуда, период, частота, циклическая частота, фаза.

Простейший вид периодических колебаний − это гармонические колебания. Гармонические колебания − это периодическое изменение во времени физической величины, происходящее по закону косинуса или синуса. Уравнение гармонических колебаний имеет вид

1) Смещение x − это величина, характеризующая колебания и равная отклонению тела от положения равновесия в данный момент времени.

2) Амплитуда колебаний А − это величина, равная максимальному отклонению тела от положения равновесия.

3) Период колебаний T − это наименьший промежуток времени, через который система, совершающая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент, выбранный произвольно. Единица измерения [T] = 1 с .

За период система совершает одно полное колебание.

4) Частота колебаний ν − это величина, равная числу колебаний, совершаемых в единицу времени (за 1 секунду). Единица измерения [ν]= 1 Гц . Частота определяется по формуле

5) Циклическая частота ω − это величина, равная числу полных колебаний, совершающихся за 2π секунд. За единицу циклической частоты принята угловая частота, при которой за время 1 с совершается 2π циклов колебаний, [ω]= с -1 . Циклическая частота связана с периодом и частотой колебаний соотношением

6) Фаза колебаний ωt + φ0 − фаза указывает местоположение колеблющейся точки в данный момент времени.

7) Начальная фаза φ0 − указывает местоположение колеблющейся точки в момент времени t = 0 .

5.2. Сложение одинаково направленных и взаимно перпендикулярных гармонических колебаний.

Сложение нескольких колебаний одинакового направления можно изображать графически с помощью метода векторной диаграммы.

Гармоническое колебание может быть представлено графически с помощью вращающегося вектора амплитуды А . Для этого из произвольной точки O , выбранной на оси Ox , под углом φ0 , равным начальной фазе колебания, откладывается вектор амплитуды А . Модуль этого вектора равен амплитуде рассматриваемого колебания. Если этот вектор привести во вращение с угловой скоростью ω , равной циклической частоте колебаний, то проекция конца вектора амплитуды будет перемещаться по оси Ox и принимать значения от -A до +A , а колеблющаяся величина изменяться со временем по закону x = Acos(ωt + φ0)

1. Сложение одинаково направленных гармонических колебаний.

Сложим два гармонических колебания одинакового направления и одинаковой частоты. Смещение x колеблющегося тела будет суммой смещений x1 и x2 , которые запишутся следующим образом:

Представим оба колебания на векторной диаграмме. Построим по правилу сложения векторов результирующий вектор А . Проекция этого вектора на ось Ox равна сумме проекций слагаемых векторов x=x2+x2 , следовательно, вектор А представляет собой результирующее колебание. Определим результирующий вектор амплитуды А потеореме косинусов

Так как угол между векторами А 1 и А 2 равен φ=π-(φ21) , то cos[π-(φ21)]=-cos(φ21) , следовательно, результирующая амплитуда колебания будет равна

Определим начальную фазу результирующего колебания.

Из рисунка видно, что начальная фаза результирующего колебания

Таким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, также совершает гармонические колебания в том же направлении и с той же частотой.

2. Сложение взаимно перпендикулярных гармонических колебаний.

Рассмотрим результат сложения двух гармонических колебаний одинаковой частоты, происходящих во взаимно перпендикулярных направлениях. Допустим, что материальная точка совершает колебания как вдоль оси X , так и вдоль оси Y . Выберем начало отсчета времени так, чтобы начальная фаза первого колебания была равна нулю. Тогда уравнения колебаний примут вид

где φ − разность фаз обоих колебаний.

Уравнение траектории получим, исключив из уравнений (5.2.6) параметр времени t: cosωt= $$x\over A_1$$ , а sinωt= $$\sqrt<1-cos^2 ωt>=\sqrt<1-x^2\over A_1^2>$$ Разложим косинус во втором из уравнений (5.2.6)

Перепишем это уравнение в следующем виде

После преобразования, получим

Используя тригонометрическое тождество cos 2 φ+sin 2 φ=1 , окончательно получим

Это есть уравнение эллипса, оси которого ориентированы относительно координатных осей произвольно. Ориентация эллипса и величина его полуосей зависят от амплитуд колебаний и разности фаз.

Рассмотрим несколько частных случаев и определим форму траектории для них:

a) разность фаз равна нулю [φ=0]

В этом случае $$( < x\over A_1 >— < y\over A_2 >)^2=0$$ , откуда получается уравнение прямой

Результирующее движение является гармоническим колебанием вдоль этой прямой с частотой ω и амплитудой $$A= \sqrt+A_2<^2>>$$ .

2) разность фаз равна ±π[φ=±π] .

В этом случае $$( < x\over A_1 >— < y\over A_2 >)^2=0$$ , откуда получается уравнение прямой

3) Разность фаз равна ± $$π\over 2$$ [φ=± $$π \over2$$ ] . Тогда

Уравнение эллипса, причем полуоси эллипса равны соответствующим амплитудам колебаний. При равенстве амплитуд колебаний эллипс вырождается в окружность. Случаи φ=+ $$π\over 2$$ и φ=- $$π\over 2$$ отличаются направлением движения. Если φ=+ $$π\over 2$$ , то уравнения колебаний имеют следующий вид: x=A1cosωt , и y=-A2sinωt и движение совершается по часовой стрелке. Если φ=- $$π\over 2$$ , , то уравнения колебаний имеют следующий вид: x=A1cosωt , и y=A2sinωt и движение совершается против часовой стрелке.

Рассмотренные три частных случая представлены на рис. 5.2.3, а, б, в. Рис

4) Если частоты складываемых взаимно перпендикулярных колебаний различны, то траектория результирующего движения имеет вид сложных кривых, называемых фигурами Лиссажу . Форма этих кривых определяется соотношением амплитуд, частот и разности фаз складываемых колебаний.

На рис. 5.2.4 показаны фигуры Лиссажу, которые получаются при соотношении частот 1:2 и различной разности фаз колебаний.

По виду фигур можно определить неизвестную частоту по известной частоте или определить соотношение частот складываемых колебаний.

5.3. Дифференциальное уравнение гармонических колебаний и его решение.

Продифференцируем по времени уравнение гармонических колебаний

и получим выражение для скорости

Из сравнения уравнений (5.3.1) и (5.3.2) следует, что скорость опережает смещение по фазе на π/2 . Амплитуда скорости равна Аω .

Продифференцировав уравнение (2) еще раз по времени, получим выражение для ускорения

Как следует из уравнения (5.3.3), ускорение и смещение находятся в противофазе. Это означает, что в тот момент времени, когда смещение достигает наибольшего, положительного значения, ускорение достигает наибольшего по величине отрицательного значения, и наоборот. Амплитуда ускорения равна Аω 2 (рис. 5.3.1).

Из выражения (5.3.3) следует дифференциальное уравнение гармонических колебаний

Результирующая сила, действующая на материальную точку массой m , определяется с помощью второго закона Ньютона. Проекция этой силы

Эта сила пропорциональна смещению точки из положения равновесия и направлена в сторону противоположную этому смещению, т. е. она стремится вернуть точку в положение равновесия, и поэтому называется возвращающей силой . Таким образом, гармонические колебания происходят под действием силы F , пропорциональной смещению x и направленной к положению равновесия,

где k=mω 2 − постоянный коэффициент. Возвращающая сила подобна упругим силам, возникающим в телах при их деформации. Такая зависимость силы от смещения характерна для упругой силы, поэтому силы иной физической природы, удовлетворяющие зависимости (5.3.6) называются квазиупругими силами .

Материальная точка, совершающая колебания под действием квазиупругой силы, называется линейным осциллятором . Ее динамическое поведение описывается дифференциальным уравнением

ω0 − собственная частота осциллятора.

Решение этого уравнения дает закон движения линейного осциллятора x=Acos(ωt+φ0) .

5.4. Энергия гармонических колебаний.

В процессе колебаний происходит превращение кинетической энергии в потенциальную энергию и обратно (рис. 5.4.1). В момент наибольшего отклонения от положения равновесия полная энергия состоит только из потенциальной энергии, которая достигает своего наибольшего значения. Далее при движении к положению равновесия потенциальная энергия уменьшается, при этом кинетическая энергия возрастает. При прохождении через положение равновесия полная энергия состоит лишь из кинетической энергии, которая в этот момент достигает своего наибольшего значения. Далее при движении к точке наибольшего отклонения происходит уменьшение кинетической и увеличение потенциальной энергии. И при наибольшем отклонении потенциальная опять максимальная, а кинетическая энергия рана нулю. И т. д.

Потенциальная энергия тела, совершающего гармонические колебания равна

Кинетическая энергия тела, совершающего гармонические колебания равна

Таким образом, полная энергия гармонического колебания, состоящая из суммы кинетической и потенциальной энергий, определяется следующим образом

Следовательно, полная энергия гармонического колебания

оказывается постоянной в случае гармонических колебаний.

Найдем среднее значение потенциальной энергии за период колебания

Аналогично получается для среднего значение кинетической энергии

Таким образом, и потенциальная, и кинетическая энергии изменяются относительно своих средних значений по гармоническому закону с частотой 2ω и амплитудой ωt kA 2

5.5. Пружинный, математический и физический маятники.

Рассмотрим несколько простейших систем, совершающих свободные гармонические колебания.

1) Пружинный маятник − это материальная точка массой m , подвешенная (или расположенная горизонтально) на абсолютно упругой пружине жесткостью k и совершающий гармонические колебания под действием упругой силы. Пусть шайба массой m , прикрепленная к пружине, совершает колебания. Для составления дифференциального уравнения колебаний запишем второй закон Ньютона в проекции на ось Ox Fупр=ma . Упругая сила Fупр=-kx . Приравнивая последние два уравнения и, используя определение ускорения тела, получим

Сравнивая уравнения (5.3.7) и (5.5.2) получаем, что пружинный маятник совершает гармонические колебания с частотой

Так как период колебаний определяется по формуле T= $$2π\over ω_0$$ , то период колебаний пружинного маятника

2) Математический маятник − это идеализированная система, состоящая из невесомой и нерастяжимой нити, на которой подвешена материальная точка массой m . Отклонение маятника от положения равновесия будем характеризовать углом φ , образованным нитью с вертикалью.

При отклонении маятника от положения равновесия возникает вращательный момент M , равный по величине mqlsinφ .Он имее акое же направление, что стремится вернуть маятник в положение равновесия. Следовательно, выражение для вращательного момента имеет вид: M=-mqlsinφ . Применим основно ательного движения

где L=ml 2 − момент инерции материальной точки. Тогда, учитывая, что угловое ускорение ε= $$d^2φ\over dt^2$$ , получим

Если рассматривать малые колебания, то sinφ≈φ . Получим

То есть при малых колебаниях угловое отклонение математического маятника изменяется по гармоническому закону с частотой

Период колебаний математического маятника

3) Физический маятник − это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной оси, проходящей через точку, не совпадающую с центром масс тела. При отклонении маятника от положения равновесия на угол φ возникает вращательный момент, стремящийся вернуть маятник в положение равновесия. Этот момент равен M=-mglsinφ .

Согласно основному уравнению динамики вращательного движения получаем

где I − момент инерции маятника относительно оси, проходящей через точку подвеса.

Если рассматривать малые колебания, то sinφ≈φ . Получим

То есть при малых колебаниях угловое отклонение математического маятника изменяется по гармоническому закону с частотой

Период колебаний математического маятника

Из сопоставления формул периодов колебаний математического и физического маятников T=2π $$\sqrt$$ и T=2π $$\sqrt$$ получается, что математический маятник с длиной

будет иметь такой же период колебаний, что и данный физический маятник.

Величина lпр (отрезок OO′) называется приведенной длиной физического маятника − это длина такого математического маятника, период колебаний которого совпадает с периодом данного физического маятника. Точка на прямой, соединяющей точку подвеса с центром масс, и лежащая на расстоянии приведенной длины от оси вращения, называется центром качания (О′) физического маятника. Точка подвеса О и центр качания обладают свойством взаимности: при переносе точки подвеса в центр качания прежняя точка подвеса становится новым центром качания.


источники:

http://spravochnick.ru/fizika/elektromagnitnye_kolebaniya/uravnenie_garmonicheskih_kolebaniy/

http://physics.belstu.by/mechanics_lk/mechanics_lk7.html

Читайте также:
  1. Автоколебания
  2. Акустические колебания
  3. Акустические колебания
  4. Акустические колебания. Действие шума на человек
  5. Вибрации и акустические колебания
  6. Вибрация, акустические колебания и шумы
  7. Волново́й фронт — это поверхность, до которой дошли колебания к данному моменту времени. Волновой фронт является частным случаем волновой поверхности.
  8. Вынужденные гармонические колебания пружинного маятника
  9. Вынужденные колебания. Резонанс
  10. Вынужденные колебания. Резонанс