Запишите какое нибудь следствие уравнения 5x 7

Школе NET

Register

Do you already have an account? Login

Login

Don’t you have an account yet? Register

Newsletter

Submit to our newsletter to receive exclusive stories delivered to you inbox!

  • Главная 
  • Вопросы & Ответы 
  • Вопрос 2566876

Васян Коваль

Как его делать? просто решить как обычное уравнение? (4,5,7,8 записать какое-нибудь следствие . )

Запишите какое нибудь следствие уравнения 5x 7

Учебный элемент № 1.
Цель: закрепить понятие «следствие уравнения», навык выяснения, какое из уравнений является следствием другого.

Указания учителя: вспомните определение следствия уравнения. «Если все корни первого уравнения являются корнями второго, то второе уравнение называется следствием первого».

Пример: выяснить какое из уравнений (х – 5)(х – 3)=0 (1) и х – 5=0 (2) является следствием другого.

Решение: первое уравнение имеет корни х1=5 и х2=3, а второе – единственный корень х=5. Поэтому первое уравнение является следствием второго.
Задания самостоятельной работы (на 10 мин).
Выяснить, какое из двух данных уравнений является следствием другого.

1 вариант.2 вариант.
х + 4 = 0 и (х – 1)(х + 4). (3 балла)2 – х = 0 и 4 – х 2 = 0. (3 балла)
х 2 +3х – 10 = 0 и х – 2 = 0 (4 балла)х 2 + х – 6 = 0 и х + 3 = 0.(4 балла)

Записать какое – нибудь следствие уравнения.

3х = 4. (3 балла)5х = — 7. (3 балла)
х 2 + 1 = 0. (3 балла)= 0. (3 балла)

Список правильных ответов и критерии оценивания ученик получает от учителя. Учащийся исправляет ошибки и проставляет число заработанных баллов в оценочный лист. Если он набрал 9 баллов или больше, то переходит к следующему учебному элементу. Если же набрано меньше 9 баллов, то следует прорешать задания другого варианта, аналогичные тем, в которых была допущена ошибка, и проставить набранные баллы в графу «корректирующие задания».
Учебный элемент № 2.
Цель: закрепить понятие «равносильные уравнения», навык определения равносильных уравнений.

Указания учителя: прочитайте внимательно данные ниже пояснения и выполните самостоятельную работу.

Уравнения, имеющие одно и то же множество корней называются, равносильными. Два уравнения, не имеющие корней, так же являются равносильными. Любое из двух равносильных уравнений является следствием другого.

Пример:3х – 3 = 0х – 1 = 0.
3(х – 1)=0х2 = 1.
х – 1 = 0.х1 = 1

Большинство уравнений решаются с помощью перехода от данного уравнения к равносильному. Так решаются уравнения первой степени с одним неизвестным, квадратные уравнения, показательные уравнения. Уравнение заменяется ему равносильным при следующих преобразованиях:

  1. любой член уравнения можно переносить из одной части в другую, изменив его знак на противоположный;
  2. обе части уравнения можно умножить или разделить на одно и то же число, не равное нулю.

При делении обеих частей уравнения на выражение, содержащее неизвестное, может произойти потеря корня!

1способ2 способ Пример: x lg ( x + 2) = — x : x x lg ( x + 2) = — x ОДЗ: х + 2 >0 lg (x +2) = — 1 x lg(x + 2) + x = 0 x > -2. lg ( x + 2) = lg x ( lg ( x + 2) + 1) = 0 x + 2 = 0,1 x = — 1,9

В первом случае произошла потеря корня. Преобразования, которые приводят к потере корней, при решении уравнений производить нельзя!
Задания самостоятельной работы (на 10 мин).
Объяснить, почему данные уравнения равносильны.

1 вариант.2 вариант.
3х = 6 и 3х + 2 = 8. (3 балла)2х = 15 и 7х = 45. (3 балла)
18х 2 – х = 3 и 18х 2 = 3 + х. (3 балла) 2 – 5 = 2х и 7х 2 – 2х = 5. (3 балла)
5х = 20 и 10(х –4) = 0. (3 балла)10х = 3 и = 0. (3 балла)

Выяснить, равносильны ли уравнения.

15х = 3 и 5х – 1 = 0. (3 балла)х 2 = 4 и (х – 2)(х + 2) = 0. (3 балла)
2 х+1 = 4 и х – 1 = 0. (4 балла)3 х – 7 = 2 и 3х = 6. (4 балла)

Проверьте и оцените свою работу, правильные ответы возьмите у учителя. Исправьте ошибки, если они есть, проставьте количество в оценочные листы.

Если вы набрали 12 баллов, то переходите к следующему этапу, если же меньше, то решайте задание другого варианта, аналогичное тому, в котором ошиблись.
Учебный элемент № 3.
Цель: закрепить навык решения простейших логарифмических уравнений.

Указания учителя: внимательно прочитайте данные ниже пояснения и выполните задания.

Простейшее логарифмическое уравнение имеет вид:logaf(x) =logag(x), где, а>0,a1. Имеются два основных метода решения логарифмических уравнений:

  1. преобразовать логарифмическое уравнение к видуlogaf(x) =logag(x) и воспользоваться теоремой: «Еслиlogaf(x) =logag(x), где, а>0,a1,f(x)>0,g(x)>0, тоf(x) =g(x)». Из найденных корней отобрать те, которые удовлетворяют неравенствамf(x)>0 иg(x)>0; остальные корни уравненияf(x) =g(x) являются посторонними для уравненияlogaf(x) =logag(x);
  2. метод введения новой переменной.

ОДЗ:
применив свойство суммы логарифмов, заменим данное уравнение его следствием:

по теореме обратной теореме Виета находим корни:

х2 = -5. ОДЗ (при х = -5 левая часть уравнения теряет смысл.) х =1 является корнем исходного уравнения, а х = -5 – посторонний корень.

Ответ: х = 1.
Задания самостоятельной работы (на 20 мин).
Решите уравнение.

1 вариант.2 вариант.
log2 x = 3. (2 балла)log3 x = 2. (2 балла)
log4 x = . (2 балла)log25 x = . (2 балла)
ln(x – 3) = ln 2. (3 балла)lg(1 – 5x) = lg 1. (3 балла)
lg(x + ) + lg(x ) = 0. (4 балла)lg(x – 1) + lg(x + 1) = 0. (4 балла)
log2 (x – 2) + log2 (x – 3) = 1. (4 балла)log3 (5 – x) + log3 ( -1 – x) = 3. (4 балла)
lg(x 2 – 9) – lg(x – 3) = 0. (4 балла)log5 (x 2 – 4) – log5 (x – 2) = 0. (4 балла)
log6 (x – 1) – log6 (2x – 11) = log6 2. (4 балла)ln(3x –1) – ln(x + 5) = ln 5. (4 балла)

Если набрано 17 баллов, то переходите к следующему элементу. Если меньше, то прорешайте соответствующее задание другого варианта.
Учебный элемент № 4.
Цель: уметь применять полученные знания при решении задач.

Указания учителя: вы прошли 1 уровень усвоения материала. Теперь вам самостоятельно придется выбрать метод решения уравнений. Вспомните свойства логарифмов, основное логарифмическое тождество, формулу перехода от логарифма по одному основанию к логарифму по другому основанию. Для этого прочитайте текст учебника А.Н Колмогорова и др. «Алгебра и начала математического анализа, 10 – 11 классы» на стр. 233 – 235. Выполните письменно самостоятельную работу.
Задания самостоятельной работы (на 20 мин).
Решите уравнение.

1 вариант.2 вариант.
log7 (2x 2 – 7x + 6) – log7 (x – 2) = log7 x. (5 б)log11 (2x 2 –9x + 5) – log11 x = log11 (x – 3) (5 б)
lg=lg x (5 баллов)lg=lg x. (5 баллов)
log13 log3 log2 (x 2 + 2x) = 0. (5 баллов)log0,8 log2 log3 (x 2 + 3x – 1) = 0. (5 баллов)
2log2 x = 3log3 x. (5 баллов)3log4 x = 2log3 x. (5 баллов)

Проверьте и оцените свою работу, правильные ответы возьмите у учителя. Исправьте ошибки, если они есть. Проставьте баллы в оценочные листы.

Если набрано 15 баллов или больше, то переходите к следующему учебному элементу, если меньше, то решайте задания другого варианта, аналогичные тем, в которых была допущена ошибка.
Учебный элемент № 5.
Цель: творчески применять полученные знания в новых условиях.

Указания учителя: молодцы! Вы освоили решение уравнений 2 уровня сложности. Целью дальнейшей вашей работы является применение своих знаний и умений в более сложных ситуациях.
Задания для самостоятельной работы.
(Они даются в одном варианте и не ограничиваются временными рамками, так как их решают далеко не все учащиеся. А время, отводимое на эту работу, определяется ситуацией на уроке.)

  1. lg(x2+ x – 5) = lg 5x + lg. (6 баллов).
  2. log2(x + 1) + 2 log4(x + 5) = 8 + log0,58.(7баллов).
  3. log3x + logx – logx = 6.(8баллов).
  4. (7баллов).

5. (6 баллов).
Проверьте и оцените свои работы. Исправьте ошибки, если они есть, подсчитайте количество баллов. Проставьте количество баллов в оценочный лист. Оцените свои работы.

Разорившийся человек может пересчитать своих друзей на мизинце одной руки. Американское изречение
ещё >>

1. Понятие уравнения и его корней

Равенство с переменной называ­ется уравнением. В общем виде урав­нение с одной переменной x записы­вают так: f (я) = g (я).

Под этой краткой записью пони­мают математическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны.

2х = —1 — линейное уравнение; х 2 — 3х + 2 = 0 — квадратное уравнение; чJx + 2 = x — иррациональное уравнение (содер­жит переменную под знаком корня).

Корнем (или решением) уравне­ния с одной переменной называется значение переменной, при подста­новке которого в уравнение получа­ется верное равенство.

Решить уравнение — значит най­ти все его корни (и обосновать, что других корней нет) или доказать, что корней нет.

x = 2 — корень уравнения \/x + 2 = x, так как при x = 2 получаем верное равенство: -\Д = 2, то есть 2 = 2.

2. Область допустимых значений (ОДЗ)

Областью допустимых зна­чений (или областью опреде­ления) уравнения называется общая область определения для функций f (x) и g (x), стоя­щих в левой и правой частях уравнения.

Для уравнения л/x + 2 = x ОДЗ: x + 2 1 0, то есть x 1 —2, так как область определения функции f (x) = yj x + 2 опре­деляется условием: x + 2 1 0, а область определения функции g (x) = x — множе­ство всех действительных чисел.

Если каждый корень первого уравне­ния является корнем второго, то второе уравнение называется следствием пер­вого уравнения.

Если из правильности первого равенства следует правильность каждого последую­щего, то получаем уравнения-следствия.

При использовании уравнений-след­ствий не происходит потери корней ис­ходного уравнения, но возможно появление посторонних корней. Поэтому при исполь­зовании уравнений-следствий проверка полученных корней подстановкой их в ис­ходное уравнение является составной час­тью решения (см. пункт 5 этой таблицы).

► Возведем обе части уравне­ния в квадрат:

(x + 2) = x 2 , x + 2 = x 2 , x 2 — x — 2 = 0, x1 = 2, x2 = —1. Проверка. x = 2 — корень (см. выше); x = —1 — посторонний ко­рень (при х = —1 получаем не­верное равенство 1 = —1). Ответ: 2. 2 = х обла­стью допустимых значений являются все действительные числа. Это можно записать, например, так. ОДЗ: R, поскольку функции f (x) = x 2 и g (x) = x имеют области определения R.

Понятно, что каждый корень данного уравнения принадлежит как об­ласти определения функции f (x), так и области определения функции g (x) (иначе мы не сможем получить верное числовое равенство). Поэтому каж­дый корень уравнения обязательно принадлежит ОДЗ этого уравнения. Это позволяет в некоторых случаях применить анализ ОДЗ уравнения при его решении.

Например, в уравнении л/x — 2 + \/1 — x = x функция g (x) = x определена при всех действительных значениях x, а функция f (x) = л/x — 2 + VT — x ко при условии, что под знаком квадратного корня будут стоять неотрица­тельные выражения. Следовательно, ОДЗ этого уравнения задается систе-

мой -! из которой получаем систему -! не имеющую решений.

[1 — x 10, [x 2 — 1 = 0. Но тогда верно, что (х — 1)(х + 1) = 0. Последнее урав­нение имеет два корня: х = 1 и х = —1. Подставляя их в заданное уравнение, видим, что только корень х = 1 удовлетворяет исходному уравнению. По­чему это случилось?

Это происходит поэтому, что, используя уравнения-следствия, мы гаран­тируем только то, что корни заданного уравнения не теряются (каждый корень первого уравнения является корнем второго). Но второе уравнение, кроме корней первого уравнения, имеет еще и другой корень, который не яв­ляется корнем первого уравнения. Для первого уравнения этот корень явля­ется посторонним, и, чтобы его отсеять, выполняется проверка подстановкой корней в исходное уравнение. (Более полно причины появления посторон­них корней рассмотрены в таблице 7 на с. 54.) Таким образом, чтобы пра­вильно применять уравнения-следствия для решения уравнений, необходи­мо помнить еще один о р и е н т и р: при использовании уравнений-следствий возможно появление посторонних корней, и поэтому проверка подстанов­кой корней в исходное уравнение является составной частью решения.

Схема применения этих ориентиров дана в таблице 6. В пункте 3 этой таблицы приведено решение уравнения

Замечание. Переход от данного уравнения к уравнению-следствию мож­но обозначить специальным значком ^, но его использование для записи решения не является обязательным. Вместе с тем, если этот значок запи­сан, то это свидетельствует о том, что мы воспользовались уравнениями- следствиями, и поэтому обязательно в запись решения необходимо вклю­чить проверку полученных корней.

С понятием равносильности вы знакомы еще из курса алгебры 7 класса, где равносильными назывались те уравнения, которые имели одни и те же корни. Заметим, что равносильными считались и такие два уравнения, ко­торые не имели корней. Формально будем считать, что и в этом случае урав­нения имеют одни и те же корни, поскольку ответы к таким уравнениям одинаковы: «уравнения не имеют корней» (точнее: одинаковыми являются множества корней таких уравнений — они оба пустые, что обозначается символом 0).

В курсе алгебры и начал математического анализа мы будем рассматри­вать более общее понятие равносильности, а именно: равносильность на определенном множестве.

Два уравнения называются равносильными на некотором множе-
стве, если на этом множестве они имеют одни и те же корни, то
есть каждый корень первого уравнения является корнем второго

и, наоборот, каждый корень второго уравнения является корнем
первого.

Для уравнений, заданных на множестве всех действительных чисел (например, для линейных), мы можем однозначно дать ответ на вопрос: «Равносильны ли данные уравнения?» Например, уравнения х + 3 = 0 и 2х + 6 = 0 — равносильные, поскольку оба имеют одинаковый корень х = —3 и других корней не имеют, таким образом, каждое из них имеет те же решения, что и второе.

При рассмотрении равносильности уравнений на множестве, которое от­личается от множества всех действительных чисел, ответ на вопрос «Равно­сильны ли данные уравнения?» может существенно зависеть от того, на каком множестве мы рассматриваем эти уравнения. Например, если рас­смотреть уравнения:

то, как было показано выше, уравнение (3) имеет единственный корень х = 1, а уравнение (4) — два корня: х = 1 и х = —1. Таким образом, на множестве всех действительных чисел эти уравнения не являются равносильными, по­скольку у уравнения (4) есть корень х = —1, которого нет у уравнения (3). Но на множестве положительных действительных чисел эти уравнения равно­

сильны, поскольку на этом множестве уравнение (3) имеет единственный положительный корень х = 1 и уравнение (4) также имеет единственный положительный корень х = 1. Следовательно, на множестве положительных чисел каждое из этих уравнений имеет те же решения, что и второе.

Укажем, что множество, на котором рассматривается равносильность уравнений, как правило, не задается искусственно (как в последнем слу­чае), а чаще всего таким множеством является ОДЗ исходного уравнения. Договоримся, что далее

все равносильные преобразования уравнений (а также неравенств и си­стем уравнений и неравенств) мы будем выполнять на ОДЗ исходного урав­нения (неравенства или системы). Отметим, что в том случае, когда ОДЗ за­данного уравнения является множество всех действительных чисел, мы не всегда будем ее записывать (как не записывали ОДЗ при решении линейных или квадратных уравнений). И в других случаях главное — не записать ОДЗ в решение уравнения, а реально учесть ее при выполнении равносильных преобразований данного уравнения.

Например, для уравнения \Ix + 2 = x ОДЗ задается неравенством х + 2 1 0. Когда мы переходим к уравнению х + 2 = х 2 , то для всех его корней это уравнение является верным равенством. Тогда выражение х 2 , стоящее в пра­вой части этого равенства, всегда неотрицательно (х 2 1 0), таким образом, и равное ему выражение х + 2 также будет неотрицательным: х + 2 1 0. Но это и означает, что ОДЗ данного уравнения (х + 2 1 0) учтено автоматически для всех корней второго уравнения и поэтому при переходе от уравнения yjx + 2 = x к уравнению х + 2 = х 2 ОДЗ заданного уравнения можно не запи­сывать в решение.

Для выполнения равносильных преобразований попробуем выделить общие ориентиры, аналогичные соответствующим ориентирам получения уравнений-следствий.

Как указывалось выше, выполняя равносильные преобразования уравне­ний, необходимо учесть ОДЗ данного уравнения — это и есть первый о р и — ентир для выполнения равносильных преобразований уравнений.

По определению равносильности уравнений необходимо гарантировать, чтобы каждый корень первого уравнения был корнем второго и наоборот — каждый корень второго уравнения был корнем первого. Для первой части этого требования мы уже выделили общий ориентир: достаточно гарантиро­вать сохранение правильности равенства при переходе от первого уравнения ко второму (с. 49).

Но тогда, чтобы выполнить вторую часть этого требования, достаточно второе уравнение рассмотреть как верное равенство (то есть взять такое значение переменной, которое является корнем второго уравнения) и га­рантировать, что при переходе к первому верное равенство сохраняется (этот корень остается и корнем первого уравнения). Фактически из опреде­ления равносильности уравнений получаем, что каждое из равносильных уравнений является следствием другого уравнения). Таким образом, при

выполнении равносильных преобразований мы должны гарантировать со­хранение правильности равенства на каждом шаге решения не только при прямых, но и при обратных преобразованиях — это и является вторым о р и — ен т и р ом для решения уравнений с помощью равносильных преобразова­ний. (Соответствующие ориентиры схематически представлены в пункте 5 табл. 6.)

Например, чтобы решить с помощью равносильных преобразований урав-

——- = 0, достаточно учесть его ОДЗ: х + 1 Ф 0 и условие равенства

дроби нулю (дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель не равен нулю). Также следует обратить внима­ние на то, что на ОДЗ все необходимые преобразования можно выполнить как в прямом, так и в обратном направлениях с сохранением правильности равенства.

Запись решения в этом случае может быть такой:

= 0. ► ОДЗ: х + 1 Ф 0. Тогда х 2 —1 = 0. Отсюда х = 1 (удовлетворяет

условию ОДЗ) или х = —1 (не удовлетворяет условию ОДЗ). Ответ: 1. 2 + л/ x — 2 = 6x + >/ x — 2. Перенесем из правой части уравнения в левую слагаемое \tx — 2 с противоположным знаком и приведем подобные члены.

Получим х 2 — 6х = 0, х1 = 0, х2 = 6

к уравнению, ОДЗ которого шире, чем ОДЗ заданного уравнения;

Приведение обе­их частей урав­нения к обще­му знаменателю (при сокращении знаменателя)

4 + 7 = 4 x + 2 x + 3 x 2 + 5x + 6 Умножим обе части уравнения на общий знаменатель всех дробей (х + 2)(х + 3).

4 (х + 3) + 7 (х + 2) = 4,

Возведение обеих частей иррацио­нального уравне­ния в квадрат

yj2x +1 =Vx. 2х + 1 = х,

б) выполне­ние преоб­разований, при которых происходит неявное умно­жение на нуль;

Умножение обеих частей уравнения на выражение с пере­менной

х 2 + х + 1 = 0. Умножим обе части уравнения на х —1.

(х — 1)(х 2 + х + 1) = 0. Получим х 3 — 1 = 0, х = 1

Как получить правильное (или полное) решение

Пример правильного (или полного) решения

при решении уравнения

х1 = 0 не является корнем заданного уравнения

Выполнить про­верку подстановкой корней в заданное уравнение

x 2 + V x — 2 = 6x + >/ x — 2.

► х 2 — 6х = 0, х1 = 0, х2 = 6. Проверка показывает, что х1 = 0 — посторонний корень, х2 = 6 — корень.

Ответ: 6. x + 2 x + 3 x 2 + 5x + 6

► 4 (x + 3) + 7 (x + 2) = 4;

11x = —22, x = —2. Проверка показывает, что х = -2 — посторонний корень. Ответ: корней нет. 2 + х + 1 = 0.

► D = —3 2 = (2х + 1) 2 . Получим 3х 2 + 6х = 0, х1 = 0, х2 = —2

2. Потеря корней

Явное или неяв­ное сужение ОДЗ заданного урав­нения, в частно­сти выполнение преобразований, в ходе которых происходит не­явное деление на нуль

1. Деление обеих ча­стей уравнения на выражение с пе­ременной

Поделив обе части уравнения на х, получим

2. Сложение, вычи­тание, умноже­ние или деление обеих частей уравнения на выражение, ОДЗ которого уже, чем ОДЗ задан­ного уравнения

Если к обеим частям уравнения прибавить \[x, то получим уравнение

x 2 + yfx = 1 + yfx, у которого только один корень х = 1


источники:

http://davaiknam.ru/text/uchebnij-element—cele-zakrepite-ponyatie-sledstvie-uravneniya

http://ya-znau.ru/znaniya/zn/274