Значения главных напряжений определяют из решения кубического уравнения

Значения главных напряжений определяют из решения кубического уравнения

Тензор напряжений обладает свойством симметрии. Для доказательства этого свойства рассмотрим приведенный в лекции 5 элементарный параллелепипед с действующими на его площадках компонентами тензора напряжений. Так как тело находится в равновесии, следовательно, находится в равновесии любая его часть, в том числе и элементарный объем. Запишем одно из шести уравнений равновесия этого объема, а именно — сумму моментов всех сил относительно оси Ох. Все силы, кроме двух, либо не создают момента относительно ocи Ох, либо взаимно уничтожаются. Отличные от нуля моменты создают компоненты (верхняя грань) и (права грань):

После сокращения на элемент объема dV=dxdydz получим

Аналогично, приравнивая нулю сумму моментов всех сил относительно осей Оу и Ог, получим еще два соотношения

Эти условия симметрии и тензора напряжений называются также условиями парности касательных напряжений: касательные напряжения, действующие по двум взаимно перпендикулярным площадкам в направлениях, ортогональных ребру, образованному пересечением этих площадок, равны по величине. С учетом этих свойств из девяти компонент тензора напряжений независимыми оказываются шесть компонент.

Покажем теперь, что компоненты тензора напряжений определенные для трех взаимно перпендикулярных площадок, полностью характеризуют напряженное состояние в точке, т. е. позволяют вычислить компоненты вектора напряжений на площадках, произвольно ориентированных относительно выбранной системы координат. Для этого рассмотрим элементарный объем, образованный сечением параллелепипеда, изображенного на рис. 1, плоскостью, пересекающей координатные оси и имеющей единичный вектор нормали

Рис.1. Элементарный четырехгранник с компонентами напряженного состояния.

п с компонентами nx, ny, nz. На гранях полученного таким образом бесконечно малого тетраэдра действуют напряжения, показанные на рис. 1. При этом вектор напряжений pn на наклонной площадке разложен па составляющие рx, рy, рz вдоль координатных осей. Площади граней, ортогональных координатным осям и вектору нормали, обозначим соответственно dFx, dFy, dFz, dF. Эти площади связаны между собой соотношениями

вытекающими из того, что грани, ортогональные координатным осям, есть проекции наклонной площадки на соответствующую координатную плоскость.

Проектируя силы, действующие на гранях элементарного тетраэдра, на координатные оси, получим уравнения равновесия для рассматриваемого объема. Например, проекции всех поверхностных сил на ось Ох дают

С учетом соотношений (1) после сокращения на dF получим уравнение, связывающее проекцию рx вектора напряжений с соответствующими компонентами тензора напряжений. Объединяя это уравнение с двумя аналогичными уравнениями, полученными проектированием сил на оси Оy и Оz, приходим к следующим соотношениям

носящим название формул Коши. Эти формулы определяют вектор напряжений на произвольно выбранной площадке с вектором п через компоненты тензора напряжений.

Формулы (2) позволяют вычислить через компоненты тензора напряжений

Курсовая работа: Расчет напряжений деформаций в изотропном теле по заданному тензору напряжений

Расчет напряжений деформаций в изотропном теле по заданному тензору напряжений

1. Исходные данные

1. Задан следующий тензор напряжений:

МПа.

2. Направляющие косинусы площадки, по которой нужно вычислить напряжения, равны:

.

1.1 Определение инвариантов напряженного состояния

Инвариантом называется величина, независящая от системы координат. В частности, напряженное состояние в любой точке является инвариантом, несмотря на то, что составляющие тензора в разных системах координат, т.е. напряжения, действующие по координатным площадкам, различны. Однако, имеются выражения, составленные из напряжений по координатным площадкам, которые остаются постоянными в любой системе координат. Эти выражения и называются инвариантами напряженного состояния в точке или инвариантами тензора напряжений.

( 1)

Главными напряжениями называются нормальные напряжения, действующие по площадкам, где отсутствуют касательные напряжения. Координатные оси, являющиеся нормалями к таким площадкам, называются главными осями тензора напряжений, а сами площадки – главными площадками.

Главные напряжения определяются из кубичного уравнения:

(2)

Подставляя численные значения инвариантов тензора напряжений из(1), получаем:

Кубические уравнения общего вида могут иметь комплексные корни, уравнения для определения главных напряжений и главных деформаций всегда имеют три действительных корня. Решать их можно по-разному.

1. Можно сначала определить подбором один из корней уравнения, а затем разложить левую часть уравнения (2) на два сомножителя: линейный двучлен и квадратный трехчлен. После этого из решения квадратного уравнения определяются два оставшиеся корня.

2. Существует и аналитический способ решения, для этого используются формулы Кардано.

Воспользуемся вторым способом.

Пусть задано кубическое уравнения:

(4)

получим кубичное уравнение (приведенное):

(5)

Здесь и вычисляются по формулам:

(6)

Формулы Кардано для случая уравнения с тремя действительными корнями имеют вид:

(7)

(8)

Далее с помощью подстановки(4) в (3) находим корни исходного уравнения.

Решим наше уравнение (2):

Подстановка (4) с новыми обозначениями получает вид:

. (10)

Здесь изменен знак второго слагаемого подстановки потому, что .

Подставляя (10) в (9) получим уравнение аналогичное (5):

(11)

Здесь коэффициенты и вычисляются по формулам (6):

Далее по формулам (7) находим:

По формулам (8) находим корни уравнения (5):

Учитывая (10), находим корни исходного уравнения (9), являющимися главными напряжениями:

(12)

В соответствии с правилом индексации главных напряжений введены обозначения: — алгебраически максимальное напряжение; — алгебраически среднее (минимаксное) напряжение; — алгебраически минимальное напряжение.

Величины и вычислялись с точностью до третьего знака после запятой для того, чтобы в дальнейшем при решении систем уравнений, в которых от зависят величины коэффициентов, избежать возможных больших погрешностей, если встретятся малые разности больших величин.

Тензор напряжений в главных осях имеет вид:

.

1.3 Определение положения главных осей тензора напряжений

Положение главных осей тензора напряжений определяется матрицей направляющих косинусов:

(13)

Здесь первая строка матрицы представляет направляющие косинусы главной оси, по которой действует напряжение ; вторая строка — направляющие косинусы главной оси, по которой действует напряжение ; третья строка — направляющие косинусы главной оси, по которой действует напряжение . Все направляющие косинусы задаются в исходной (старой) системе координат, показанной на рис. 1

Направляющие косинусы главных осей находятся из системы уравнений:

(14)

(15)

Здесь — направляющие косинусы главной оси тензора напряжений, вдоль которой действует напряжение .

В теории упругости (1) доказывается, что определитель, составленный из коэффициентов при неизвестных () системы уравнений (13), равен нулю. Следовательно, три уравнения в (13) являются линейно зависимые: одно уравнение (любое) является следствием двух других. Поэтому для определения направляющих косинусов любой главной оси нужно одно из уравнений удалить (любое) и к двум оставшимся добавить уравнение (14). Решив полученную систему трех уравнений с тремя неизвестными, найдем направляющие косинусы , соответствующие главному напряжению . Положение оставшихся двух осей находят аналогично.

Нужно иметь в виду, что каждый из направляющих косинусов получается с двумя знаками. Знаки соответствуют повороту осей по часовой стрелке или против часовой стрелки. При этом главные оси занимают одно и то же положение, но направлены в противоположные стороны.

При определении положения главных осей нужно оставить одну систему знаков, конкретизировав при этом направления осей.

1.3.1 Вычисление направляющих косинусов

Для определения направляющих косинусов , соответствующих оси, вдоль которой действует напряжение , подставим в (14) и (15) ; при этом из (14) возьмем первые два уравнения (можно взять любые два):

(16)

Сначала найдем отношения между направляющими косинусами; для этого систему уравнений приведем к виду:

(17)

Решая подсистему, состоящую из первых двух уравнений, получим:

. (18)

Подставляя эти выражения в третье уравнение (17), найдем:

, (19)

.

На этом этапе решения задачи можно у выбрать любой знак. Примем . Подставляя это значение в (18), получим:

. (20)

Углы, которые составляет первая главная ось тензора напряжений с исходными осями координат, находятся вычислением функции от :

.

Вычисление

Подставляя в (14) и (15) и используя те же два уравнения из (14) (можно и другие), получим:

(21)

Решая эту систему уравнений в той же последовательности, как и в п. 3.2.1, получим:

.

Здесь по-прежнему знак у принят положительным, а знаки остальных направляющих косинусов определились решением подсистемы из первых двух уравнений (21).

Углы, которые составляет вторая главная ось с исходными осями координат, пока вычислять не будем. Может оказаться, что определитель матрицы направляющих косинусов будет равен -1 , что соответствует левой системе координат. Для тог, чтобы получить правую систему координат, нужно будет у одной из осей поменять знаки направляющих косинусов.

1.3.2 Вычисление

Подставляя в (14) и (15) и используя те же уравнения, получим:

(22)

Решая эту систему, получим:

.

Соответствующие углы равны:

.

Проверка правильности вычисления главных напряжений

Для проверки правильности вычисленных главных напряжений определим инварианты тензора напряжений:

Как видим, инварианты получились такими же, как и в выражениях (1). Этот результат также подтверждает вывод о том, что напряженное состояние в точке нагруженного тела является инвариантным объектом.

Проверка правильности вычисления положения главных осей тензора напряжений

Проверка правильности вычисления положения главных осей тензора напряжений основана на свойствах матрицы направляющих косинусов (13). Она относится к ортогональным матрицам и обладает следующими свойствами:

1. Определитель ортогональной матрицы равен единице.

2. Сумма квадратов элементов, входящих в каждую строку (столбец) равна единице.

3. Если рассматривать каждую строку матрицы как вектор-строку, а каждый столбец – как вектор-столбец, то скалярные произведения двух разных векторов-строк (векторов-столбцов) равны нулю.

Воспользуемся первым свойством ортогональных матриц.

Подставив в (13) вычисленные направляющие косинусы, получим;

. (23)

Определитель этой матрицы равен единице:

.

Так как определитель получился равным 1 , то система координат – правая. Поэтому знаки направляющих косинусов остаются без изменения.

.

Соответствующие углы будут равны:

.

1.5 Вычисление максимальных касательных напряжений, полного, нормального и касательного напряжений по заданной площадке

Вычисление максимальных касательных напряжений

В теории упругости доказывается, что максимальные касательные напряжения действуют по двум взаимно перпендикулярным площадкам, расположенным под к главным площадкам, по которым действуют главные нормальные напряжения и.

Рис. 1. Максимальные касательные напряжения

Вычисление полного, нормального и касательного напряжений по площадке с заданными направляющими косинусами

Направляющие косинусы нормали к заданной площадке равны:

Проекции полного напряжения, действующего на заданной площадке, на координатные оси найдем по формулам:

(24)

Полное напряжение на этой площадке найдем по формуле:

.

Нормальное напряжение по этой площадке определим, спроектировав координатные составляющие на нормаль к площадке:

.

Касательное напряжение на этой площадке найдем по теореме Пифагора (см. рис. 2):

.

Рис. 2. Полное нормальное и касательное напряжения, действующие по заданной площадке

Составление кубического уравнения и вычисление главных нормальных напряжений

Кубическое уравнение запишем в виде:

(1)

После подстановки значений инвариантов получим

Первый корень кубического уравнения определим, например, подбором делителя для свободного члена уравнения (1): ±1 . ±10 . и т.д.

Правильность подбора первого корня б’ проверим его подстановкой в уравнение (1).

Второй и третий корень определим, применив, например, теорему БЕЗУ, согласно которой кубическое уравнение типа (1) де­лится без остатка на величину (σ — σ ‘), где σ ‘ — первый ко­рень, определённый подбором.

Применение этой теоремы позволяет не производить упомянуто­го деления вообще, а коэффициенты нового (теперь уже — квадратно­го уравнения, полученного в результате такой операции, определяют в последовательности, показанной в таблице 2.

Таблица 2- Определение коэффициентов квадратного уравнения

Название: Расчет напряжений деформаций в изотропном теле по заданному тензору напряжений
Раздел: Рефераты по физике
Тип: курсовая работа Добавлен 21:09:25 11 декабря 2010 Похожие работы
Просмотров: 260 Комментариев: 21 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно Скачать
Исходное (кубическое) уравнение
a0=+1a1=±(I1)a2=±(I2)Свободный член a3=±(I3)
-190-200
Искомое (квадратное) уравнение:
Первый корень σ’=90,79716a0=b0=+1b1= σ’· b0+a1b2= σ’· b1+a2b3= σ’· b2+a3=0
b0=+1b1=90,79716·1+ +(-190)b2 = 90,79716 · · (-99,20283722) + +(-200)b3 = 90,79716 · · (-9207,336159) + +836000
+1-99,20283722-9207,336159

При составлении квадратного уравнения на основании исходного (кубического) значения степени для «σ» кубического уравнения уменьшаются на единицу.

Второй и третий корни кубического уравнения (1) находим, решая квадратное уравнение.

Корни этого уравнения находятся по формуле

Вычисление корней квадратного уравнения

157,618255

-58,41541752

Корни этого квадратного уравнения являются вторым и третьим корнем кубического уравнения.

С учетом известного соотношения σ1> σ2> σ3 найден­ным корням кубического уравнения присваивают соответствующие индексы «1», «2», «3».

Выполним проверку найденных корней кубического уравнения

I1=157,6182547+90,79716278 +(-58,41541752)=190 (МПа)

I2= — [157,6182547 · 90,79716278 +90,79716278 · (-58,41541752) +

+ (-58,41541752) · 157,6182547] = -[ 14311,29033+(-5303,954173)+

+ (-9207,3362)] = 200 (МПа)

I3=157,6182547 · 90,79716278 · (-58,41541752) =-836000 (МПа)

Вычисление направляющих косинусов нормалей к главным площадкам.

Аналитически направлявшие косинусы нормалей к главный площадкам с главными нормальными напряжениями σг (то есть σ1 или σ2 или σ3) определяют по формулам:

,

где , , -направляющие косинусы нормалей к соответствующей главной площадке;

, . Значения и вычисляют решая систему

Вычисление направляющих косинусов нормалей для первой главной площадки.

Найдем значения и , решив два уравнения системы.

Каждое уравнение системы делим на a’3 и вводим обозначение

, .

;

.

Подставив численные значения получим

;

.

Найдем значения направляющих косинусов для первой площадки

Выполним проверку полученных значений из условия что:

Посчитаем значение углов в градусах

α’1=arcos( )=arcos(0,683968)= 46,85°

α’2= arcos( )=arcos(-0,7051032)= 134,84°

α’3= arcos( )=arcos(0,187131)= 79,21°


источники:

http://www.bestreferat.ru/referat-254617.html

http://megaobuchalka.ru/9/29688.html